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Abstract

The paper is devoted to description of selected properties of Wavelet transforms

and their use for signal and image decomposition and reconstruction. Basic goals

of this process are in signal denoising using estimated threshold limits and signal

resolution enhancement. Resulting algorithms are veri�ed for simulated signals

at �rst and applied both for real one dimensional signal processing and analysis

of biomedical images. Selected parts of the paper are based upon Wavelet and

Image processing toolboxes.

1 Introduction

Wavelet transform represents a mathematical tool for one-dimensional or multi-dimensional
signal analysis and processing. The paper is devoted to a brief description of Wavelet functions
used for signal analysis at �rst. The main part of the paper provides selected algorithms for
signal and image decomposition and reconstruction applied for their denoising at �rst. The
�nal part of the paper presents the use of signal decomposition for its resolution enhancement
resulting in di�erent sampling period comparing to the original one.

Mathematical analysis and numerical experiments are devoted to the study of di�erent
Wavelet functions and threshold limits used during application of time scale signal analysis.

2 Principles of Signal Wavelet Analysis

Signal Wavelet decomposition using Wavelet transform (WT) provides an alternative to the
short-time Fourier transform (STFT) for signal analysis [5, 3] resulting in signal decomposition
into two-dimensional function of time and scale.

Wavelet functions used for signal analysis are derived from the initial functionW (t) form-
ing basis for the set of functions
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for discrete parameters of dilation a = 2m and translation b = k 2m. Wavelet dilation closely
related to its spectrum compression enables local and global signal analysis. An example of an
analytically de�ned Wavelet function is presented in Fig. 1.
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Figure 1: Shanon Wavelet function derived from the initial function de�ned in the form of
relationW (t)=sin(�t=2) cos(3�t=2)=(�t=2) and the e�ect of its dilation to spectrum compression



3 Signal Decomposition and Reconstruction

The principle of signal and image decomposition and reconstruction has various common features
both in the case of discrete Fourier transform (DFT) and Wavelet transform. The use of discrete
Fourier transform is presented in Fig. 2 for an image matrix [g(n;m)]N;M taking into account
that a one-dimensional signal can be considered as a special case of an image having one column
only. In the decomposition stage the discrete Fourier transform is applied to the original matrix
column by column at �rst. Denoting values of a selected column of a matrix [g(n;m)]N;M having
index c as fx(n)gN�1

n=0 = fg(n; c)gN�1

n=0 it is possible to �nd its DFT X(k). The set of indices
k = �N=2;�N=2 + 1; � � � ; N=2� 1 imply normalized frequencies f(k) = k=N 2 h�0:5; 0:5). The
inverse discrete Fourier transform (IDFT) applied to the sequence X(k) results in the original
sequence again. Signal enhancement can be achieved by symmetric extension of the original
sequence X(k) by zeros resulting in the sequence

[Z(�R=2);� � �; Z(R=2�1)]T =[0;� � �; 0;X(�N=2);� � �;X(N=2�1); 0;� � �; 0]T (1)

for even values of R>N using fundamental properties of the discrete Fourier transform. The
IDFT of sequence Z(k) results in enhanced sequence z(n) having the sampling period of the
length N=R in comparison with the original sampling period equal to one.
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Figure 2: Principle of signal and image resolution enhancement by DFT

The principle of signal and image decomposition and reconstruction using Wavelet trans-
form is presented in Fig. 3 for an image matrix [g(n;m)]N;M . The decomposition stage includes
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Figure 3: The principle of signal and image resolution enhancement by WT

the processing the image matrix by columns at �rst using Wavelet (high-pass) and scaling
(low-pass) functions followed by row downsampling by factor D in stage D:1. In the following
decomposition stage D:2 the same process is applied to rows of the image matrix followed by
column downsampling. The decomposition stage results in this way in four images representing
all combinations of low-pass and high-pass initial image matrix processing. The reconstruction
stage includes row upsampling by factor U at �rst and row convolution in stage R:1. The
corresponding images are then summed. The �nal step R:2 assumes column upsampling and
convolution with reconstruction �lters followed by summation of the results again.

In the case of one-dimensional signal processing, steps D:2 and R:1 are omitted. The
whole process can be used for

1. Signal/image decomposition and perfect reconstruction using D=2 and U=2

2. Signal/image resolution enhancement in the case of D=1 and U=2



4 Signal and Image De-Noising

Both in the case of one-dimensional and two-dimensional signal Wavelet decomposition it is
possible to modify resulting coeÆcients c before the following signal reconstruction to eliminate
undesirable signal components. Methods of such a process assume estimation of appropriate
threshold limits [6] and their application to Wavelet transform coeÆcients.

In the case of soft thresholding it is possible to evaluate new coeÆcients c(k) using original
coeÆcients c(k) for a chosen threshold limit Æ by relation

c(k)=

(
sign c(k) (jc(k) j �Æ) if jc(k) j> Æ
0 if jc(k) j� Æ

Results of this process applied to selected real signals are presented in Figs. 4 and 5.
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Figure 4: Principle of a gas consumption signal decomposition, thresholding and reconstruction
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Figure 5: Principle of magnetic resonance image decomposition, thresholding and reconstruction



5 Signal Resolution Enhancement

Fig. 6 presents the main parts of algorithm for one-dimensional signal resolution enhancement in
Matlab notation using both discrete Fourier transform and Wavelet transform. Similar approach
can be used for image resolution enhancement.

% DFT in Signal Resolution Enhancement

% N - length of the sequence

% R - new sequence length

% x - given sequence

X=fftshift(fft(x));

Y=wextend('1D','zpd',X,(NZ-N)/2);

y=R/N*ifft((ifftshift(Y)));

% WT in Signal Resolution Enhancement

% wavelet - definition of Wavelet function

% l - decomposition level

[c,l]=wavedec(x,level,wavelet);

[Lo D,Hi D,Lo R,Hi R]=wfilters(wavelet);

XL=wconv('1D',x,Lo D);

XH=wconv('1D',x,Hi D);

XL2=dyadup(XL);

XH2=dyadup(XH);

XLL=wconv('1D',XL2,Lo R);

XHH=wconv('1D',XH2,Hi R);

z=XLL+XHH;

Figure 6: Signal resolution enhancement by discrete Fourier transform and Wavelet transform

Fundamental functions used in this program segment include the following:

X = fft(x) { fast Fourier transform of a given sequence [x(0); x(1); :::; x(N � 1)]T

X = fftshift(X) { shift of the zero frequency value to the center of the spectrum

Y = wextend(01D0;0 zpd0;X; L) { symetric extension of a given one dimensional signal by L zeros
on both sides

[c; l] = wavedec(x; level; wavelet) { Wavelet decomposition of the signal x at a speci�ed level
using a selected wavelet to provide vector c of approximate and detailed wavelet coeÆcients
which are the result of the low-pass and high-pass �ltering of the signal and vector l of
their lengths

[Lo D;Hi D;Lo R;Hi R] = wfilters(wavelet) { de�nition of four �lters associated with the
orthogonal or biorthogonal wavelet

XX = wconv(01D0; x; f) { one dimensional convolution of a signal speci�ed by a vector
[x(0); x(1); :::; x(N � 1)]T and a selected �lter f

XX = dyadup(X) { extended copy of vector X obtained by inserting zeros after each element
of the given vector

Selected results of signal resolution enhancement by Wavelet transform applied to gas
consumption data are presented in Fig. 7. Numerical comparison of application of di�erent
Wavelet functions is presented in Table 1. Fig. 8 presents selected results of using the Wavelet
transform for a magnetic resonance subimage resolution enhancement. Numerical comparison
of application of di�erent Wavelet functions is presented in Table 2.
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Figure 7: Gas consumption resolution enhancement using Wavelet transform resulting in halving
the sampling period

Table 1: Mean square errors (MSE) of selected methods of Wavelet enhancement

applied to a gas consumption using different sampling periods

Method MSE Method MSE

Haar Wavelet 0.3296 Wavelet SYM2 0.4162

Daubechies Wavelet DB3 0.5661 Wavelet SYM4 0.2654

Daubechies Wavelet DB4 0.7919 Wavelet SYM8 0.2692
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Figure 8: Resolution enhancement of a magnetic resonance subimage using Wavelet transform

Table 2: Mean square errors (MSE) of selected methods of Wavelet enhancement
applied to a magnetic resonance subimage

Method MSE Method MSE

Haar Wavelet 0.1206 Wavelet SYM2 0.0865

Daubechies Wavelet DB3 0.2072 Wavelet SYM4 0.0867

Daubechies Wavelet DB4 0.2655 Wavelet SYM8 0.0873



6 Conclusion

The paper presents similar approach to signal and image denoising [7] and resolution enhance-
ment using Wavelet transform and providing comparison of di�erent Wavelet functions. Result-
ing signal can be then used for its prediction based upon modi�ed sampling period [2]. In the
case of the image this approach can be used for reconstruction of missing parts of images and
to more precise classi�cation of their regions [4, 1].
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