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Abstract: Two original algorithms for computing the roots of low order
quasipolynomials are introduced in the paper. The first algorithm is based on Weyl's
construction combined with argument principle rule. The second algorithm is based on
quasipolynomial function mapping in the complex plane. Both algorithms provide the
approximate positions of the roots located inside a selected region. The accuracy of the
roots is then increased by using Newton's iteration method. The quasipolynomial
rootfinder using the second algorithm has been implemented in Matlab. The presented
algorithms provide the significant contribution to the analysis of time delay systems,
whose characteristic functions are of the quasipolynomial form.
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1  INTRODUCTION

Description of plants by means of models with time delays has recently become common in
control engineering. Unlike the classical system description, this kind of models allows to describe
basic features of real systems, i.e., transport phenomenon, after-effects or distributed parameters
without necessity of using higher order models, see e.g., Zítek (1998). The dynamics of both classical
and time delay systems (TDS) are determined by positions of their poles and zeros, respectively. In
order to explain concept of system poles and zeros, let us consider the classical linear SISO system
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where x is the vector of system state, u and y are the system input and output, respectively, and A, B
and C are the coefficient matrices of appropriate dimensions. Transforming state description (1) into
input-output relation and performing Laplace transform (considering zero initial conditions), the
model acquires the form of transfer function
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where I is the identity matrix and s is operator of Laplace transform. The poles of system (1) are the
solutions of the characteristic equation
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where n is system order and ai, i=1..n are the coefficients of polynomial M(s) while the system zeros
are the solutions of the equation
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where m≤n and bi, i=1..m are the coefficients of polynomial N(s). It should be noted that the system
poles, i.e., the roots of M(s) are identical with the eigenvalues of matrix A.  The position of system
poles in the s-plane determines the basic features and modes of the system dynamics, i.e., stability,



natural frequency, damping ratio of the responses. The system zeros determines the proportion in
which the system poles are combined in system input-output responses (Goodwin, 2001).

2  COMPUTING POLYNOMIAL ROOTS

As can be seen, both functions M(s) and N(s) in (2) are polynomials. There exists a great deal
of methods for computing the polynomial roots, see, e.g., the overview in Pan, (1997). If the
polynomial degree is 2, the root finding process is trivial, based on the formula for computing the
roots of quadratic equation. The analogous formulas, however much more complicated, are available
for polynomials of degrees 3 and 4 (of some specific form). The nonexistence of such formulas for the
polynomials of degree n>4 has been proved already in the beginning of the nineteenth century. Thus, a
numerical method has to be used for computing the roots of such polynomials. Actually, also the roots
of polynomials of degrees 3 and 4 are usually solved numerically, since it is rather cumbersome to
compute the roots in an analytic way.

Many of the existing numerical algorithms for computing polynomial roots are based on the
fact that the polynomial roots are identical with the eigenvalues of the companion matrix of the
polynomial. For example the companion matrix of polynomial M(s) given by (3) can be of the
following form
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Thus the problem of computing the roots of M(s) is changed into the problem of computing the
eigenvalues of (5). Such an approach is also used in Matlab function roots in which matrix (5) is built
from the polynomial coefficients and its eigenvalues are evaluated by means of function eig using the
subroutines of LAPACK (Anderson, et. al., 1999). The theory of numerical computing the matrix
eigenvalues is rather extensive, see, e.g., Wilkinson, (1965). There are available algorithms for solving
the eigenvalue problem for sparse matrices and also for the matrices of considerably high order. A
comprehensive practical guide for the methods of computing the matrix eigenvalues where the theory
overview as well as the final code-written algorithms can be found is (Bai, et al, 2000). It should be
noted that higher order polynomials are likely to be ill-conditioned, see Wilkinson (1984), i.e., the
small changes of the polynomial coefficients (given, e.g., by truncation errors) can completely change
the spectrum of the roots. Dealing with such ill-conditioned polynomials requires applying special
iterative methods, e.g., Eigensolve, (Fortune, 2001). An alternative way of computing the polynomial
roots is based on so-called Weyl's geometric construction, see, e.g., Wilf, (1978) or Pan, (1997) and
the references therein. The method will be briefly explained in section 5.1.

3  POLES AND ZEROS OF TIME DELAY SYSTEMS

Let us consider the general form of linear SISO TDS using the Stieltjes integrals (this special
form of integral allows to involve both lumped and distributed delays into one convolution formula)
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where the matrices )(τA , )(τB  and )(τD  are functional matrices of delay distribution with the upper
bound T. Unlike the state of the classical system (1) that is given by the actual values of the state
variables, the state of system (6) is given by trajectories of the state variables on the interval [t-T, t],
see Zítek (1988), Diekman, et al, (1995).

If 0D =)(τ  the system is called retarded while if 0D ≠)(τ  the system is called neutral (Hale
and Verduyn Lunel, 1993). The retarded systems are more common in control engineering than neutral
systems since their theory is more developed and some of their features are similar to the features of



classical systems, e.g., the finite number of unstable poles, insensitivity of the poles to infinitesimal
changes of the model parameters and so on. The retarded systems are used for describing the plants
with after-effects, latencies, transportation phenomenon or distributed parameters, e.g., heat-transfer or
chemical processes. Using the classical systems (1) for description of such plants results in high order
model with many artificial state variables (unmeasured, often without physical meaning). On the other
hand, involving the delays in the model results in considerably lower order model with the state
variables often identical with the available system outputs. Neutral systems are largely used for
describing lossless propagation phenomena, see Niculescu, (2001), which is encountered, e.g., in
modelling of distributed networks.

In case of zero initial conditions the Laplace transform of (6) can be expressed in the
following form
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Laplace form (7) is advantageous, since it allows to use equivalent matrix operations like in the case of
classical system description. Analogously to this case of classical system (1), the formulation (7) can
be transformed into input-output transfer function
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are quasipolynomials as a rule and term d(s) represents the distribution of system input delay.
Analogously to the case of classical systems the poles and zeros of TDS determine the features of the
system dynamics. The system poles are the solutions of the characteristic equation
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where n is system order, ai are the coefficients and )(sQi , i=1..n are the corresponding delay
distribution terms of quasipolynomial M(s). The system zeros are the solutions of the equation
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where m≤n, bi are the coefficients and )(sPi , i=1..m are the corresponding delay distribution terms of
quasipolynomial N(s), respectively. Unlike the classical system (1), TDS has infinitely many poles
because the characteristic equation (12) is transcendental. The number of zeros depends on the form of
N(s), which does not have to be quasipolynomial as a rule (depending on the matrices B(τ) and C). If
at least one of the terms )(sPi is not equal to zero, equation (13) is also transcendental with infinitely
many roots.

The physical meaning of poles and zeros of TDS is equivalent to the meaning of poles and
zeros of classical system, at least in case of retarded systems. Provided that no zero-pole cancellation
occurs, every pole generates a natural mode in the system responses. Even though the number of poles
and zeros is infinite, only few of them are decisive in the system dynamics. As regards the system



poles, their roles in the system dynamics depend on the distances of the poles from the imaginary axis
and from the s-plane origin. The dominant poles are those located in the closest positions to the s-
plane origin and to the stability boundary. Nevertheless, it is difficult to claim either the distance from
the origin or the distance from the imaginary axis is more important in determining the particular pole
significance. An alternative method for evaluating pole dominance based on residue evaluation has
been proposed in Zítek and Vyhlídal, (2002). Anyway, if at least one pole is located to the right from
the stability boundary, the system is unstable. As regards the system zeros, the analogous evaluation to
system poles can be done, i.e., the most important zeros from the infinite set are those located in the
closest positions to the stability boundary. The sign of the zeros is also important, however, not from
the stability point of view. The zeros with plus sign are called nonminimum-phase zeros and they are
responsible for the undershoots in the system responses.

The distribution of system poles differs significantly with respect to the character of TDS. If
the system is retarded, the number of poles located to the left from the vertical line drawn in any real α
is always finite, see Hale and Verduyn Lunel, (1993). The poles of a retarded system are usually
distributed as a finite number of chains asymptotically departing to the upper-left direction with
increasing distance of the poles from the s-plane origin. The poles of neutral systems are distributed
within the lines drawn in some specific real α and β. The poles of a neutral system are also distributed
as a finite number of asymptotic chains. However, these chains asymptote to the chains of essential
spectrum, see e.g. Avelar and Hale, (1980). The essential spectrum corresponds to the spectrum of
difference equation
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which is given by the solutions of the following equation
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where Me(s) is called exponential polynomial

Since the stability of some difference equations is very sensitive to the infinitesimal changes in
delays, the concept of so-called strong stability has been introduced in analysis of neutral systems, see
Hale and Verduyn Lunel, (2002). The difference equation is strongly stable if it is stable
independently on the changes in delays. The analysis of stability of difference equation (14) is very
important, since the essential spectrum asymptotically determines the spectrum of the neutral system.
If the difference equation (14) is unstable, it means that the neutral system is not only unstable but it is
unstable with infinitely many unstable poles.

4  COMPUTING THE POLES OF RETARDED TDS

The problem of computing poles of TDS has remained unsolved untill the nineties of the last
century when two algorithms appeared both based on discretization of the continuous TDS. The first
algorithm is based on discretization of the solution operator (Engelborghs and Roose, 1999, 2002) in
which the discretization is performed by means of linear multi-step methods. The second algorithm is
based on discretization of the infinitesimal generator of the semigroup, (Ford and Wulf, 1998), (Wulf
and Ford, 2000) where the Euler explicit method and trapezoidal rule is used for the discretization.
The solution operator and the infinitesimal generator of the semigroup are the concepts used in
functional theory of TDS, in which the functional state of the system is directly involved, see Hale and
Verduyn Lunel, (1993) or Diekman, et al, (1995). The method based on on discretization of the
solution operator has been implemented in the Matlab package DDE-BIFTOOL (Engelborghs, 2001).
The modifications of both methods consisting in using stiff accurate Runge-Kutta method Radau IIA
can be found in Breda, Maset and Vermiglio, (2002).

As has been mentioned in section 2, many of the numerical methods for computing the
polynomial roots are based on transforming the problem into computing the eigenvalues of the
companion matrix of the polynomial. Such an approach cannot be directly used for computing the
roots of quasipolynomials because the terms corresponding to the particular powers of s, see (12), are
of functional form. The problem of computing the roots of the quasipolynomials corresponding to



retarded TDS can be solved by approximating the continuous system by a discrete system and
applying, e.g., δ-transform, see Zítek and Petrová, (2002) and the references therein. Consequently, the
system characteristic functions Md(δ) and Nd(δ) are of the polynomial forms and the classical approach
for computing polynomial roots can be used. It should be recalled that the roots of these polynomials
are located in δ-domain. The stability boundary of δ-domain corresponding to the imaginary axis of
s-plane is a circle located in the left-hand side of the complex plane touching the imaginary axis in the
origin. The radius of the stability boundary circle depends on the chosen step h of the discretization
method. In order to obtain the approximations of the poles and zeros of TDS, the computed roots δi

should be transformed into the s-plane using the appropriate formula si=f(δi, h). Analogously to the
methods mentioned in section 4, only the right-most poles and zeros of TDS can be obtained using this
method. The drawback of this method is given by the fact that the polynomials Md(δ) and Nd(δ) are of
very high degree if h<<τmax, where τmax is the delay with the maximum length. The coefficients of high
degree Md(δ) and Nd(δ) are influenced by truncation errors which is likely to result in a numerical
failure providing incorrect results. Consequently, step h should not be chosen too small which is
contradictory requirement to the requirement to achieve good approximation of the rightmost roots
(the smaller h, the closer δ to s).   

The indispensable drawback of the mentioned methods based on discretization is given by the
fact that only the rightmost poles (zeros) of the system are approximated. The accuracy of the
approximation depends on the chosen numerical method and particularly on the chosen step of the
discretization. On the other hand the rightmost poles are the most important ones in the system
dynamics, therefore the methods often provide satisfactory results for evaluation of the dominant
modes of retarded TDS. However, to the best of the authors knowledge, the analogous methods for
computing the poles of neutral systems has not appeared yet. The objective of the paper is to introduce
two algorithms that can be used for computing both poles and zeros of continuous TDS located inside
a selected region of the complex plane both based on computing the quasipolynomial roots.

5  COMPUTING THE QUASIPOLYNOMIAL ROOTS

5.1 Weyl's construction with argument principle based test

The basic idea of Weyl's construction used for computing the polynomial roots is as follows:
On the complex plane, the search for the roots starts with an initial suspect region

],[],[ maxminmaxmin ωωββ ×=D , preferably square, containing the polynomial roots. Then the region
is partitioned into four congruent subregions, see Fig. 3. At the centre of each of them, the proximity
test is performed (Henrici, 1974), i.e., a distance of the closest
root from the centre is estimated.  If this distance exceeds the
length of the diagonal of the subregion then the square does not
contain any roots and is discarded. If the result is converse, the
subregion is called suspect and undergoes the same recursive
process of partitioning into four subregions. Subsequently the
proximity tests are performed at the centers of those smaller
subregions. The polynomial roots lying in each suspect region are
approximated by its centre with errors bounded by the half-length
of its diagonal. Thus, in k iteration steps, the approximation errors
do not exceed 0.5diag(Dk)/2k, where Dk represents the actual
suspect region.

Let us use the Weyl's construction for locating the roots of
qusipolynomials. Instead of the proximity test, let us use the argument principle, which holds for any
analytic function including quasi-polynomials, see ,e.g., (El'sgol'ts and Norkin, 1973). Considering a
quasipolynomial, e.g., in the form of M(s), see (12), the number of its roots located inside the region D
with the boundary ϕ is given by the following formula
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Fig.  1 Region D  in the s-plane



where dssdMsM /)()( =′ . As can be seen, the number of roots DN  can be computed directly by
evaluating the integral in (16), as it has been used in Zítek and Vyhlídal, (2000). However, the
numerical evaluation of the integral becomes unacceptably time and memory demanding in case that

MM /′ acquires complicated form. It usually happens if M(s) is of higher order with the delays of
different distributions.

The other possibility to evaluate DN  is based on a graphical evaluation of formula (16) which
claims that DN  is equal π2/1  times of the variation of the argument
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as s moves once around ϕ in the counter-clockwise sense. Considering the features of the
trigonometric function arc-tangent, the argument MΦ results in the form of )2/mod(π . Thus the
argument varies between -π/2 and π/2. The algorithm of evaluating the change of )(sMΦ  as s moves
around the boundary of the region D is quite simple and easy to implement. Starting from a certain
arbitrarily chosen point on ϕ, e.g. A, see
Fig. 1, and varying s continuously in the
counter-clockwise sense, )(sMΦ changes
piecewise continuously until it reaches
either π/2 or -π/2. Then )(sMΦ changes
discontinuously to ±π/2 (the sign is
opposite to the sign of previous π/2) and it
changes piecewise continuously again
until it reaches one of the boundary values
±π/2. In this way )(sMΦ  is evaluated
around ϕ, passing the points B, C and D
and coming back to the starting point A,
see Fig. 1. Since ))(( sM ϕ  is closed
contour in the complex plane, the starting
and ending values of )(sMΦ  has to be
equal. As the result of the argument
evaluation a set of curves starting and
ending at ±π/2 is obtained providing the
argument change π, -π or 0, see Fig. 2. In
order to obtain the final )(sΦ∆ϕ  the
changes in arguments on these curves, i.e.,
π, -π or 0, are to be summed.

Obviously, the final change of the
argument, whose variation along the
contour ϕ is shown in Fig. 2, is

πϕ 2)( =Φ∆ s , which means that there is

one root of M(s) in the region D., DN =1.
The presented algorithm for computing

DN , which has been used in Luzyanina
and Roose, (1996) to detect a bifurcation
points for delay differential equations,
is more suitable for computer
implementation than the algorithm based
on the evaluation of the integral in (16)
due to its distinctly lower number of
numerical operations to be performed.

Fig. 2 Variation of )(sMΦ  along the closed contour
ϕ, see Fig. 1

Fig. 3 Locating the roots by Weyl's algorithm
asterisks - quasipolynomial roots,
black dots - approximations of the roots



Using the argument principle in the particular suspect subregion, the result is not only whether
or not there are some roots in the subregion, but also the number of the roots in the subregion is
obtained. The procedure of recursive partitioning of the suspect regions is shown in Fig. 3. There are 5
roots in the region D , marked by asterisks and their approximations obtained using Weyl's
construction are marked by the black dots. The first step of the algorithm consists in computing the
number of roots in ],[],[ maxminmaxmin ωωββ ×=D  using the described argument principle rule. Then
Weyl's construction with the argument principle based test is applied recursively until the root
approximation with required accuracy is achieved

The accuracy of the final root approximations, which is given by the half of the final
(smallest) subregion, can be enhanced by means of applying, e.g., Newton's iteration method
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where si, i=1, 2, ... are the root of M(s) and k=0,1,... is the step of the Newton's iteration. Suppose that
the root approximations si,0 resulting from the algorithm based on Weil's construction are close to the
roots si then the approximations si,k are likely to converge much faster to the roots si than in case of
further carrying on Weil's algorithm.

5.2 Algorithm based on quasipolynomial function mapping in complex plane

The quasipolynomial M(s) as a function of the complex variable s = β + jω can be split up into
real and imaginary parts
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where R(β,ω) = Re{M (β,ω)} and I(β,ω) = Im{M (β,ω)}. Consequently, equation (12) can be split up
into

0),(
0),(

=
=

ωβ
ωβ

I
R

(20)

From the geometric point of view, the roots of M(s) are the intersection points of the curves described
by the implicit functions R(β,ω) = 0 and I(β,ω) = 0. Mapping the surfaces R(β,ω) and I(β,ω) over the
region ],[],[ maxminmaxmin ωωββ ×=D  the equipotential contours are given by the intersections of
the surfaces with the s-plane. Taking into account this
geometric interpretation of equation (20) the algorithm
for locating the roots of M(s) can be summarized as
follows:

1 The region ],[],[ maxminmaxmin ωωββ ×=D ,
where the roots of M(s) are to be computed, is
defined.

2 With a chosen increment ∆, the region D  is
covered by the grid of nodes dij = βj×ωi,
i =1.. |ωmax-ωmin|/∆, j = 1.. |βmax-βmin|/∆ with
stepwise incrementing co-ordinates β and ω.

3 For each node dij, the values of R(βi,ωj) and
I(βi,ωj) are evaluated.

4 Using an interpolation method, the intersections
of the surfaces R and I with the s-plane, i.e.,
contours R(β,ω) = 0 and I(β,ω) = 0, are mapped.

5 The intersection points of the contours indicate the
approximate positions of the poles.

6 The accuracy of the root approximations is
enhanced by means of Newton's iteration method.

Fig. 4 The principle of locating M(s) roots
R=Re(M)=0 - solid,
I=Im(M) = 0 - dashed



Regarding the computational effort, the algorithm is rather demanding. A lot of calculation
has to be done, especially if the region D is chosen too large and there are many roots located inside
the region. However, using the Matlab functions defined for the matrices and 3D graph functions, the
approximate locations of the roots given as the intersections of the contours can be found relatively
fast. The crucial role in the length of the root finding process is played by the increment ∆, which
should be chosen according to the expected frequency range of the contours f  and particularly to the
size of the region D. The smaller ∆ is, the more precise is the estimate of the positions of roots. On the
other hand, too small ∆ results in too long duration of the rootfinding process. To solve the problem of
choosing ∆, it is necessary to balance these two contradictory requirements. With respect to the size of
the region D  the increment ∆ should not be less than minmaxminmax

510 ωωββ −−− . If the
increment is chosen too large, the contours are not approximated well which may result in omitting
some of the roots. In such a case, the increment should be decreased. It is advisable also to divide the
original region into smaller ones and to carry out the computation separately for each new region with
the decreased increment.

5.3 Implementation of the quasipolynomial rootfinding algorithm in Matlab

The algorithm based on Weyl's construction is suitable to be applied if the number of roots in
the region D  is not too large. Although the algorithm of recursive dividing of the suspect regions is
quite simple, its computer implementation requires using an elaborate approach that would guarantee
that none piece of the region with some roots remains unsearched. On the other hand, the second
quasipolynomial rootfinding algorithm based on M(s) mapping can be easily implemented by means
of available Matlab functions. Therefore this algorithm has been chosen for computer implementation.
Using the Symbolic Math Toolbox, quasipolynomial M(s) can be written directly in the operator s, as
it results from performing Laplace transform of TDS, and no special form of M(s) is required. The
quasipolynomial rootfinder has been implemented in Matlab and is available as the function with the
following syntax

P=qroots(M,D,∆,ε) (21)

where M is the quasipolynomial of the symbolic variable s, D is the suspect region, ∆ is the increment
of the grid, ε is desired maximal error of the root approximation and P is the vector of computed roots.
The algorithm implementation will be shown in the following examples.

5.4 The limitations of the algorithm use

Also the quasipolynomials, analogously to the polynomials, may be ill conditioned. The
danger of this numerical risky form increases with the of quasipolynomial degree is high. If a
quasipolynomial is ill conditioned, the contours described by R(β,ω) = 0 and I(β,ω) = 0 are not likely
to be compact and smooth (at least on a part of the region D) and the rootfinding process fails. On the
other hand, as has been mentioned, using models with various distribution of delays result in low order
models as a rule, for which such a numerical risk is low.

Another problem of the algorithm is given by the use of Newton's method. If two roots are
close to each other, the Newton iteration can incorrectly result in a double root. If such a failure is
suspected, the computation should be run again with the region defined in the vicinity of these poles
with distinctly smaller ∆.

5.5 Example 1 - poles of a retarded system

 Let us consider a retarded system with the following functional matrix
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It can be seen that there are encountered both lumped and linear distributed delays in matrix A(s). In
order to analyse the system dynamics the system poles, i.e., the roots of quasipolynomial

{ })(det)( sssM AI −=  are to be found. Using the function qroots, according to its syntax (21) the task
can be performed in Matlab as follows

> syms s

>A=[-exp(-9*s)  exp(-4*s)  exp(-6*s); (exp(-5*s)-exp(-12*s))/7/s  -exp(-4*s)  exp(-3*s);
       exp(-7*s)     (exp(-6*s)-exp(-18*s))/12/s     exp(-5*s)]

>P=qroots(det(s*eye(3)-A), [-0.8 0.4 0 3], 0.01, 0.001)

where the command syms s produces symbolic variable s.
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Fig. 5 Distribution of the poles of  the retarded system with matrix A(s) given by (22).
left part - R(β,ω) = 0 (solid), I(β,ω) = 0 (dashed)
right part - distribution of the poles in the enlarged region D

The resulting distribution of the system poles can be seen in the left part of Fig. 5. As can be
seen the poles are given by the intersections of the contours described by the functions R(β,ω) = 0
(solid) and I(β,ω) = 0 (dashed). In the right part of Fig. 5, the distribution of poles is shown located in
the enlarged region D. Obviously, the poles tend to depart to the left from the imaginary axis, which is
the basic feature of retarded systems. Since there are 9 poles located to the right from the imaginary
axis, the system is unstable. It should be noted that the complex plane is symmetric in real axis, thus
the complex poles are conjugate. Therefore it is advisable to define the region D only on a half plane.

5.4 Example 2 - poles of a neutral system

 Let us consider a neutral system with the matrices A(s), D(s)=A(s), where A(s) is given by
(22). Analogously to the Example 1, the system poles, i.e. the roots of quasipolynomial

{ })()]([det)( ssssM AAI −+= , result from the use of the function qroots. The result of the procedure
can be seen in the left part of Fig. 6. In the right part of the figure, the distribution of the poles is
shown in the enlarged region. Besides the spectrum of the neutral system poles (marked with black
dots) also the essential spectrum of the system is show (marked with asterisks), given as the roots of
the exponential polynomial { })(det)( ssMe AI += . It can be seen that the poles of neutral system
close to the s-plane origin have the similar distribution to the poles of retarded system from
Example 1, compare Fig.5 and Fig.6. However, with increasing distance of the poles from the s-plane



origin, the poles of neutral system asymptote to the values of essential spectrum, which is the basic
feature of the neutral systems. Since a part of the essential spectrum is located to the right from the
stability boundary, the neutral system is not only unstable, but it is unstable with infinitely many
unstable poles.

−0.8 −0.4 0 0.4
0

0.5

1

1.5

2

2.5

3

Re(s )

Im
(s

 )

−0.8 −0.4 0 0.4
0

3

6

9

12

15

Re(s )

Im
(s

 )

Fig. 6 Distribution of the poles of the neutral system with the matrices A(s) and D(s)=A(s), where A(s)
          given by (22),  left part - R(β,ω) = 0 (solid), I(β,ω) = 0 (dashed)
                                   right part - distribution of the poles on enlarged region D, dots - spectrum of
                                    neutral system, asterisks - essential spectrum

6  CONCLUSIONS

Two original algorithms for computing the quasipolynomial roots located inside a selected
region in complex plane have been introduced. The first algorithm is based on application of Weyl's
construction and argument principle. The second algorithm is based on the geometric interpretation of
the quasipolynomial function in the complex plane.  The second algorithm has been implemented in
Matlab and is available as the function qroots with the syntax given by (21). Symbolic calculations
available via Symbolic Math Toolbox has been used in the function qroots as well as the Matlab 3D-
graph functions. The designed quasipolynomial rootfinder implemented in Matlab provides the
significant contribution to the analysis of time delay systems where the characteristic functions are of
quasipolynomial forms. By means of the rootfinder qroots, poles as well as zeros of both retarded and
neutral time delay systems can be computed, which simplifies the analysis of the system dynamics. It
also allows further studying of the features of time delay systems resulting in deeper understanding of
their fundamentals.
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