
DYNAMIC LIBRARIES FOR MATLAB

Michal Dobeš
Department of Computer Science, Faculty of Science,

Palacky University Olomouc, Czech Republic

Abstract
Matlab enables to call external functions created in different programming languages like C,
C++ or Fortran. A part of a program code or a function can be written in another
programming language, for example C++. It is useful especially, if the code is already
optimized for speed. This paper introduces how to create a DLL containing the function that
can be called from Matlab. Dynamic libraries were successfully used in our iris recognition
project.

Introduction
Matlab offers many functions and libraries � toolboxes to develop applications. Sometimes
there is a need to include a source code written in other programming language. In this case
Matlab enables to call external functions created in different programming languages.
Communication with Java programs is simple � Java Virtual Machine is installed during the
Matlab installation. You can run and access Java objects within the Matlab environment.
(Java version 1.3.1 is installed with Matlab 6.5.)
Communication with a subroutine (or a function) written in C, C++ or Fortran is slightly
different. You must create a Matlab Executable file (MEX-file). On Windows, it is created as
a dynamic library (DLL) file and it contains the desired routine (function). It can be called
from Matlab as if it were a built in function. Matlab functions are optimized for performance,
and usually work effectively. In some cases a code written in C++ can be performed more
effectively, especially if the code contains loops that were optimized for speed. The other
reason can be that the code was already written and was debugged in C or C++.
We used Microsoft Visual C++, and Windows 2000, so the following text refers to this
configuration.

How to create a DLL from a C/C++ code

The following steps must be performed to create a Matlab Executable file:
1. Setup appropriate compiler.
2. Write the desired function (say, in C++) according to the specific rules described later.
3. Compile the function into a Matlab executable, i.e. MEX file.

The first step is easy if a version 6 or above of Matlab is used. You can use a C++ compiler
which is ANSI C and is able to create dynamically linked libraries. A Matlab built in compiler
Lcc is also available. If there is more compilers installed on your computer it is possible to
choose what compiler will be used to compile a source code into Matlab executable. To set up
the required compiler you type: �mex �setup� from the Matlab prompt and choose the
appropriate options.

Then a C/C++ code is to be prepared so that it can be compiled into a MEX file. The name of
an executable file must be the same as the name by which it is called from Matlab (similarly
like �.m� files). Unlike .m files that are platform independent, MEX files are platform
dependent and have a different extension: �.dll� for Windows, �.mexglx� for linux.

The C/C++ source must contain a header �mex.h�. (See the example of a program). A must
contain a function which is called �mexFunction� and which acts as an interface to Matlab.
The mexFunction enables to pass the input and output arguments. (Functions prefixed with
mex perform the communication in the MATLAB environment).

The mexFunction contains four arguments:
nlhs � the number of left hand side arguments (number of expected output mxArrays)
plhs � the pointer to the output array (originally set to the array of NULL pointers)
nrhs � the number of right hand side input arrays (number of expected input mxArrays)
prhs � the pointer to the right hand side input array.

Variables, vectors, matrices, and other objects are stored as the only object type - the
MATLAB array. In C, the MATLAB array is declared as an mxArray. Routines that
manipulate with Matlab arrays have a mx prefix and allow you to create and access the
mxArrays. The type and number of the arguments passed through the mexFunction should be
checked. For example, you use mxIsDouble function that returns Boolean true if the expected
type is double, i.e.: isDouble = mxIsDouble(prhs[0]).
To acquire the pointer and the size of the input argument(s) you use mxGet functions. In this
example, the pointer to the first input argument is of a type double:
double *in1;
in1 = mxGetPr(prhs[0]);
rows1 = mxGetM;
cols1 = mxGetN;

To assign and pass the output value(s) you need to create the output array. Suppose you have
one output argument � a matrix of the size m x n and type double, you use:
double *out;
plhs[0] = mxCreateDoubleMatrix(m, n, mxReal);
and get the pointer to the beginning of the array where the output matrix is stored:
out = mxGetPr(plhs[0]);
You specify the order of an element in the Matlab array rather then a row and column to
access the values in the created matrix. The elements are stored column by column in the
array, and they are counted from zero, i.e. first column, second column ..., see the �Example
of a source code�. For more details about mex and mx functions, see the �On line manuals for
Matlab� [Mat02].

Example of a source code
A function takes three arguments, and performs 2D bilinear interpolation according to
[Ver91] (similar to �interp2� in Matlab which is used when resizing images).

// Example of a bilinear interpolation as a MEX file
#include "mex.h"

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
{
double *in1,*in2, *in3, *out;
int rows1, cols1, rows2, cols2;

// Check number of arguments
if (nrhs != 3) {
 mexErrMsgTxt("Bilinear requires three input arguments.");
} else if (nlhs > 1) {
 mexErrMsgTxt("One output argument required");

}

// check the type of arguments
 if (mxIsDouble(prhs[0]) && mxIsDouble(prhs[1]) && mxIsDouble(prhs[2]))
 {
 rows1 = mxGetM(prhs[0]); // number of rows
 cols1 = mxGetN(prhs[0]); // number of collumns
 rows2 = mxGetM(prhs[1]); // ...
 cols2 = mxGetN(prhs[1]); // ...

 in1 = mxGetPr(prhs[0]); // get a pointers to the first input argument
 in2 = mxGetPr(prhs[1]); // ...
 in3 = mxGetPr(prhs[2]); // ...

 // create the output
 plhs[0] = mxCreateDoubleMatrix(rows2, cols2, mxREAL);
 // get a pointer to the beginning
 out = mxGetPr(plhs[0]);

 // compute the bilinear interpolation ...
 double p,q,a,b,c,d;
 int position;

 for (int i=0; i<rows2; i++) {
 for (int j=0; j<cols2; j++) {

 // elements of a matrix in the array are stored collumn by column so
 position = j*rows2+i;

/* Compute bilinear interpolation [Ver91] + respect the border points ...
 ...
 */
 // assign the output value:
 *(out+position) = a*p + b*q + c*p*q + d;

 }; //for j
 }; //for i
 }
 else { mexErrMsgTxt("Arguments must be of type double.");
};
return;
} ;

Translation of a source code into a MEX file is performed from the Matlab environment by
typing: �mex bilinear.cpp�. The resulting file is stored in a bilinear.dll file. The function
bilinear is then called from the Matlab environment in the same way as an .m file, i.e.
bilinear(a, u, v).

Conclusion
Functions written in C/C++ may be optimized for speed, especially when loops are used in the
computation. In this case the function translated into a .dll may run faster then a code written
as an .m file. DLL files were successfully used in the iris recognition project [Dob02, Dob03].
In some cases [Dar99, Dar00] the speed of the function called from the .dll was three times
faster then the .m file.

References
[Dob03] Dobe�, M. Rozpoznávání obrazu: neurčitost a informace. Matematika-fyzika-

informatika. Prometheus s.r.o ve spolupráci s Jednotou českých matematiků a fyziků
a s podporou M�MT, Praha 2003, Vol. 13, No. 1, p. 42-49. ISSN - 1210-1761

 [Dar00] Darbellay, G.A., and Tichavský, P., Independent component analysis through direct
estimation of the mutual information. ICA�2000 Proc., Second International
Workshop on Independent Component Analysis and Blind Signal Separation,
Helsinki, Finland, 19.-22.6. 2000, pp. 69�75.

[Dar99] Darbellay, G.A., and Vajda, I., Estimation of the information by an addaptive
partitioning of the observation space. IEEE Trans. Information Theory, 45(4):1315-
1321.

[Dob02] Dobe�, M. and Machala, L. 2002. The database of Iris Images:
http://www.inf.upol.cz/Iris

[Mat02] On-line manuals: Matlab The Language of Technical Computing, Notes for Release
13, Math Works 2002.

[Sed92] Sedgevick, R. Algorithms in C++, Princeton University, Addison-Wesley 1992

[Ver91] Vernon, D. Machine Vision, Automated Visual Inspection and Robot Vision,
Prentice Hall International (UK) Ltd., 1991.

Contact Information

Computer Science Department, Faculty of Science, Palacky University Olomouc,
Tomkova 40, 77900, Olomouc, Czech Republic.
E-mail: michal.dobes@upol.cz

