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Abstract: Designed signal and image processing method enables to avoid impact of
measurement system on experimental evidence, mitigates noises and increases precision of
obtained data. The simulations in Matlab were used to verify the proposed algorithm
consisted of two methods. One of them is the Maximum Entropy on the Mean Method
(MEMM) that deals with the solving of the linear and noisy inverse problem of the form
y=Ax+b. The second ome is the Expectation-Minimization Algorithm (EM algorithm)
consisting of two steps. The expectation step (E step) computes estimation X and it is
followed by the maximization step (M step) that provides new estimation. Both steps have to
be iterated until convergence. In the exponential family, the E step gives similar results as the
MEMM that is why we combine both methods in order to explore the advantages of both. The
measured data (y) processed by proposed algorithm allows to eliminate the noise b and the
influence of the measurement system properties (presented by degradation matrix A). Thus,
this algorithm enables to reconstruct real data x that object produces. Importance of this
method in the signal and image processing and diagnostics is obvious.

1. MAXIMUM ENTROPY ON THE MEAN METHOD (MEMM)

The Maximum Entropy on the Mean Method (MEMM) solve the linear and noisy
inverse problem of the form of y=Ax+b, where y are the observations, A is the supposed
degradation matrix, vector x is the measured object (typically a signal or image) and b is the
noise which has to be estimated. The measured data processed by this algorithm allows to
eliminate the noise b and the influence of the measurement system properties (presented by
degradation matrix A) to the measured data y and so to obtain real data that the object
produces. Given reference measure p defined on the object x and noise b, the MEMM
consists of selecting the distribution p which is the closest to p according to the Kullback
distance and which satisfy a given constraint, in this case the observation equation. The
MEMM estimation Xis the mean of the selected distribution p . So, it is the minimizer of a
convex cost function defined on x and b.

Let have a linear inverse problem y=Ax+b. The observation matrix A is supposed to be
known and some statistical characteristics of the noise b too. When the observation matrix A
is not regular or ill-conditioned, the problem is ill-posed. It means the convex constraint

xeC, (D
where C is a convex set, is necessary. In some specific problems where the lower and upper
bound (ax,bk) are known, the convex set can be defined as

C={xeR"/x, e(a,,b,)k=1.N}. )
For the estimationx we select the distribution p which is the closest to reference

measure p according to the Kullback distance. The Kullback distance D(p||p) is defined for a
reference measure p and probability measure P by

dpr
D(pl| ) = [log, aP. 3

Thus, the MMEM method begins by the specification of the convex set C and the
reference measure dp(x) over it. The actual observations y are considered as the mean E,(X)
of the probability distribution P defined on C.



The distribution P is selected as the minimizer of the u-entropy submitted on the
constraints of the mean AEy(x) = y in the noiseless case. It means the P is the nearest
distribution respect to the Kullback distance D(p||p) to the reference measure p satisfying
equation AE,(x) =y. MEMM problem in the noiseless case is given by:

p =arg min I log dap (xuP(x),
P d/l

A

such that y=A I de(x) 4)
and x=E p(x)

\

The solution exists if it is belongs the exponential family. For each x € C , the AEy(x) =Y.
We define the function F(x) as the optimum value of the Kullback distance.

F(x) = Inf D(p || ), where P, = {P : Ep(x) = x} . (5)

Than the problem can be posed as:
% = argmin F(x),
x (6)
such that y = Ax.

This method amounts to minimizing the convex criterion and so admits the dual
formulation. The dual function is defined as

p(A)=A'y-F (1 4), )
and allows to calculate numerically the expectation Ey(x). The function F *()JA) is the
convex conjugate of the function F(x). It means that dual formulation of the problem that
have to be solved is to find estimation A by maximizing the dual function D()L):

{/i = Sl;p(ﬂt y—-F'(14)) (8)

The problem number one of the MEMM is to define the function F *(ﬂ’A) that presents
the optimum value of the dual function and to maximize it. The problem is that in the noisy
case the function F *(ﬂ’A) has to be separated to two functions:

F'(xa)=r (ra)+F, (1) ©)

The first one is the signal function Fx*(/ltA) and the second one is the noise

function F, b*(ﬂ’). As you see the problem start to be more complicated because both parts have
to be defined and solved separately. The solution of this problem is really complicated. In the
exponential family, the MEMM gives similar results as the E step of the EM algorithm. That
is why we tried to use the EM algorithm to eliminate the need of the function F *(ﬂ’A)
separation in the noisy case.

2. E-M ALGORITHM WITH MAXIMUM ENTROPY ON THE MEAN METHOD

Expectation-Minimization Algorithm (EM algorithm) consists of two steps: the
expectation step followed by the maximization step. The E step computes an estimation X
satisfying the conditions upon the observations.

Let have x the data, the y observations, f(x|0) probability density function and 0 set of
parameters of the density, then for E step we compute:

0l6l6")= Ellog £(x16)1 y,6"]. (10)



Then the M step provides new estimation:

0(1,4*,y)= 2 4E|x| y,6" | (11)
These two steps must be iterated until convergence occurs - it may be determined as:
% g < ¢ (12)

In the exponential family, the MEMM gives similar results as the E step of the EM
algorithm. That is why the new method of the iterative algorithm was used to avoid the
difficulties with the function F *(ﬂ’A) separation in the noisy case of MEMM and the both
methods were combined. We compute the estimation of the x by applying the Maximum
Entropy on the Mean Method (MEMM) into the EM algorithm. The first step is computes the
estimation A by maximizing the dual function D(A) using the MEMM and then the EM

algorithm starts by implementation of the estimation 4 - it means we compute:
0(1,4%,y)= 2 4E|x| y, 2*]. (13)
A =argmaxﬂ’AE[x | y,ﬂk]—F*(ﬂ’A). (14)
A

And these two steps are iterated until the convergence condition occurs.
2 - < 15)

3. RESULTS

The simulations were made to reconstruct real signal X (Xyque) from the measured
observations y (Vmeasured). Results of the data reconstruction are well seen in the simulations
below. Here you can see the results of the simulations of the signal x that is given by:

x=abs ((.9*cos (2*pi*[.5:1:N-.5]/N)+.05)) '. (16)

The noise is supposed to be Gaussian. Various values of the 6> have been considered. In
this paper, 6°=0.01, 6°=0.2 a 6°=0.5 are presented in figures 1, 2 and 3.

On the left side, there is the comparison between the real signal x (normal) and signal
xme (bold) computed by the MEMM with EM algorithm. Experimental data y are presented
by points.

On the right side of each figure you can see the iteration process of estimation x. The
real signal x is presented by dotted line, last iteration of the computed signal xyg by bold.
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Fig. 2 Simulation of the MEMM with EM algorithm (Parameters: 6°=0.2, 1000 iter. cycles)
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Fig. 3 Simulation of the MEMM with EM algorithm (Parameters: 6°=0.5, 10 iter. cycles)
4.  MONTE CARLO ANALYSIS

Various simulations in Matlab were made to reconstruct real signal x from the measured
observations y computed by the MEMM with EM algorithm. If the signal is too noisy, the
results will be less satisfactory as you can see in the figure 4a),b).
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Fig. 4 Simulations of the MEMM with EM algorithm
a) Parameters: 6°=0.3, 16 iter. cycles b) Parameters: 6°=0.4, 13 iter. cycles



The noise and its distribution can lead to the reconstruction faults that can cause the
estimated signal distortion. In this case, the Monte Carlo analysis is applied to avoid the
method mistakes and computing faults. It allows to reconstruct the estimation x of the real
signal x from measured, very noisy observations y with high precision.

The Monte Carlo analysis was applied to 30 simulations with the same parameters and
the obtained results are shown in the figures 5 and 6.

On the left side you can see all the simulations and the result of the Monte Carlo
analysis (black line) with its fault range (black dotted line). You can see that even if the
simulations can provide quite great reconstruction faults, the result of the Monte Carlo
analysis corresponds well with the real data x (gray bold line).

On the right side, the comparison of the real signal x (gray bold line) and the mean of
the computed estimation X of all the simulations (black thin line) with its fault range (gray
thin dotted line) is presented. From the figures is evident that quit great estimation error is
very satisfactorily eliminated by the Monte Carlo analysis (black line).
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Fig. 6 Monte Carlo Analysis of the MEMM with EM algorithm
(Parameters: 6°=0.4, 30 simulations)



5. CONCLUSIONS

The Maximum Entropy on the Mean Method (MEMM) is used to solve the linear and
noisy inverse problem. Because of difficulties in the computation process in the noisy case,
the MEMM is used as the first step of the Expectation Maximization algorithm that allows to
converge to the real signal x by the iteration process. The problem is to find the best
estimation X of the real data and satisfy the given constraints. We combine two methods in
order to gain the advantages of both. The proposed algorithm reconstructs the real data x from
measured, noisy observations y. This method enables to mitigate the noise b and the
measurement system impact.

The simulations in Matlab were made to verify this new reconstruction method based on
the Maximum Entropy on the Mean Method combined with EM algorithm. The noise is
supposed to be Gaussian. Various values of the 6> have been considered. If the signal is too
noisy, the results will be less satisfactory. The noise and its distribution can lead to the
reconstruction faults that can cause the estimated signal distortion. In this case, the Monte
Carlo analysis is applied to avoid the method mistakes and computing faults. It allows to
reconstruct the estimation X of the real signal x from measured, very noisy observations y
with favorable precision. Importance of this method in the signal and image processing and
diagnostics is obvious.

The method is still in progress.
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