
THE DESIGN OF MICROWAVE FILTERS IN MATLAB

Petr Šmíd, Zbyněk Raida

Dept. of Radio Electronics, FEEC, Brno University of Technology

Abstract

In the first part of this contribution, the design of a planar microstrip filter is described.
Descriptions are focused in solving the corrections of the size of the microstrip inductors and
capacitors. A size correction is implemented in the Optimization Toolbox of MATLAB.

In the second part, artificial neural networks (ANN) are used. We briefly describe why
neural networks are used, but we mainly describe an approach to building selected ANN. M-
files for working with ANN are implemented in the Neural Network Toolbox of MATLAB.

Introduction

A program for designing the microwave filters consists of two parts, because the planar
filter is designed in two main steps. The first one is devoted to selecting an appropriate low-
pas prototype and building a LC filter. The second main step is devoted to finding a suitable
microstrip filter (a stepped-impedance low-pas microstrip filter depicted in Fig. 1, e.g.), which
is equivalent to the classical LC filter found in the first step. Both steps are in detail described
in [1].

Fig. 1 Layout of a microstrip low-pas filter

During designing the filter by this approach, two problems have to be solved:

Size correction of the microstrip filter components
The first problem is to correct the length of the low-impedance transmission line (a se-

mi-lumped capacitor) and the length of the high-impedance transmission line (a semi-lumped
inductor). This problem is described on several examples in [1]. The aim of the correction is
to consider the series reactance of the low-impedance line and the shunt susceptance of the
high-impedance line. Therefore the model of the low-pas filter (Fig. 1) seems as depicted in
Fig. 2.

L1` L2P L2P L3`

C2`C1P C3P

Fig. 2 Lumped model of the filter depicted in Fig. 1

In Fig. 2, the symbols with index P mean the undesirable inductance (or capacitance).
The symbols with comma mean the desired inductance or capacitance. In order to consider the
undesirable parameters of reactive and susceptive components, we have to come true the next
condition: the sum of the inductance of the inductor L1’ and the inductance of the inductor L2P

has to be equal to the inductance L1 which is calculated when the classical low-pas filter is
designed. Both the rule for the capacity of the low-impedance line and the rule for the last
high-impedance line are similar.

Using [1], we are able to generalize the problem for the higher order filters. The
equations for the length correction of the third order low-pas filter (where the inductance of
the first microstrip inductor is different from the inductance of the second microstrip inductor,
Fig. 1) are derived. The derivation approach is given in [2] using [1]:

gC

C
C

gL

L
Lc

lZlZL
λ
π

λ
πω 2

0
1

01 tan2sin += (1)

gC

C
C

gL

L
Lc

lZlZL
λ
π

λ
πω 2

0
3

03 tan2sin += . (2)

gL

L

LgL

L

LgC

C

C
c

l
Z

l
Z

l
Z

C
λ
π

λ
π

λ
πω 3

0

1

0

2

0
2 tan1tan12sin1

++= (3)

In the equations (1) to (3), ωc means the cutoff frequency, L1 and L3 are the desired
inductivity of the microstrip inductors, C2 is the desired capacity of the microstrip capacitor,
lL1 and lL3 mean the length of the microstrip inductors, lC2 is the length of the microstrip
capacitor, λgL is the wavelength in the high-impedance components, λgC is the wavelength in
the low-impedance components, Z0L means the wave impedance of the microstrip inductor
and Z0C means the wave impedance of the microstrip capacitor.

Exploitation of the artificial neural network to the order estimation of the filter
The second problem is to estimate the order of the low-pas prototype filter with Bessel

response. Since we don’t know the formula for determining the order of Bessel filter [3], we
try to use several types of artificial neural networks to estimate the order of the filter with
another response (filter with Chebyshev response). If some of ANNs seem to be proper to
estimate the order of the Chebyshev filter, we use this ANN to estimate the order of the filter
with Bessel response.

Artificial neural networks are electronic systems (software or hardware ones), which
structure is similar to a human brain [4]. ANN consists of a set of neurons (Fig. 3), which are
organized to layers [4], [5]. Each neuron multiplies an input number p by a weight w, adds a
constant b to the product, and finally, the result is processed by a non-linear function.

p w
Σ f

b

a

Fig. 3 Neuron

Layers of neurons are mutually connected in order to join output of all the neurons in a
preceding layer and the inputs of all the neurons in the succeeding layer via weights. w. The
smple feed-forward ANN containing four layers with two neurons in each layer is depicted in
Fig. 4.

Weights between neurons are set during the training process [4], [5]. The trained ANN
provides results very quickly, and therefore, it can be exploited to the solution of problems,
which CPU-time demands are very high.

N

N

N

N

NN

N N

Fig. 4 Mutual connection of neurons in ANN

Implementation in MATLAB

Size correction of the microstrip filter components
In order to correct the size of the higher order low-pas microstrip filter, we have to

know several more equations except (1) to (3): equations for the filter connected as Π-net-
work are derived in [2], the other equation for correcting the size of the couple LC is given in
[1]. The equations for correcting the size of the components of the symmetrical microstrip
filter (L1 = L3) are two instead of three ones (1) to (3), and these equations are presented in
[1]. Knowing all the necessary formulas, we are able to compute the corrected lengths of the
components of any even-order microstrip low-pass filter by multiple finding the corrected
sizes of the couple LC [1]. If the order of the filter is an odd number bigger than three, we
realize the correction of sizes for first three microstrip components of the filter, and further,
we continue as in the even-order filter case described. MATLAB implementation of this
approach for filter connected as T-network follows:

if lower(Zapoj) == 't' % if the filter is connected in T-network
if (n/2) == round(n/2) % even order of LPF – counting the correction of couples LC

for ii = 1:2:n % for all couples LC
lL_orig = lL(ii); % original lengths which has to be corrected
lC_orig = lC(ii+1);
L_des = L(ii); % desired inductivity
C_des = C(ii+1); % desired capacity
[lL_cor(ii), lC_cor(ii+1)] = … % calling the function for correction of LC couple

length_cor2(lL_orig, lC_orig, L_des, C_des, lambda_gL, lambda_gC, Z0L, Z0C, fc);
end;
lL_cor(ii+1) = 0; % ekeing out the vect. lL_cor to have the same length as lC_cor

end;
if (n/2) ~= round(n/2) % odd order – counting the correction for triplet L1, C2 and L3

lL1_orig = lL(1); % original lengths which has to be corrected
lC2_orig = lC(2);
lL3_orig = lL(3);
L1_des = L(1); % desired inductivity L1
C2_des = C(2); % desired capacity C2
L3_des = L(3); % desired inductivity of L3
[lL_cor(1), lC_cor(2), lL_cor(3)] = ... % calling the function for correction of triplet L1, C2, L3

length_cor3T(lL1_orig, lC2_orig, lL3_orig, L1_des, C2_des, L3_des, lambda_gL,
lambda_gC, Z0L, Z0C, fc);

for ii = 4:2:n % for the filter branch number 4 to n – correction of couples
lC_orig = lC(ii); % original lengths which has to be corrected
lL_orig = lL(ii+1);
C_des = C(ii); % desired capacity of next couple LC
L_des = L(ii+1); % desired inductivity of next couple LC
[lL_cor(ii+1), lC_cor(ii)] = ... % calling the function for correction of LC couple

length_cor2(lL_orig, lC_orig, L_des, C_des, lambda_gL, lambda_gC, Z0L, Z0C, fc);
end;

end;
end;

In the above source code, the size correction of the microstrip filter components is
computed by these functions: length_cor2 (correction for the couple LC), lenght_cor3T (cor-
rects the size of a microstrip LCL-network). The function lenght_cor3T founds: the length of
the first high-impedance line lL1, the length of the low-impedance line lC2 and the length of the
second high-impedance line lL3 according to (1) to (3). Since the desired variables are at the
right side and we know the original values of all three variables, we can use an optimization
process [4] solicited in the Optimization Toolbox in MATLAB. We build a cost function and
we find its minimum. One of possible forms of the cost function can be similar as described in
[4]:

 () () ()233
2

222
2

111 desdesdes LLCCwLLwQ −+−+−= (4)

In (4), symbols L1, C2 and L3 has the same meaning as in (1) to (3), L1des, C2des and L3des
are the desired parameters of the classical filter designed in the first main step. The weights
are used to correct the order of the addends in (4).

For example, we describe the function lenght_cor3T. This function combines optimized
parameters (MATLAB variables lL1_or, lC2_or and lL3_or correspond to physical lengths lL1,
lC2 and lL3) into the vector of original conditions x0. And then, this function calls the function
fminunc, which finds the minimum of a function of several variables and is in detail described
in the help of the Optimization Toolbox:

x = fminunc('objective3T', x0, options, L1, C2, L3, lambda_gL, lambda_gC, Z0L, Z0C, fc);
The first parameter 'objective3T' is the cost function stored in its own m-file. The second

parameter x0 is the vector containing original values (computed as described in [1]) of the
optimized parameters. The next parameter, options, controls the optimization process. The
other parameters are transferred to the optimized function objective3T.

The function objective3T decomposes the original values from the vector and takes its
absolute value to get no negative values during the optimization process. In the following
steps, we compute the critical angular frequency, weights for optimized parameters, current
values of inductivity and current values of capacity. Finally, we compute the value of the cost
function (4). The body of the function objective3T follows:

x = abs(x); % elimination of negative results
lL1 = x(1); lC2 = x(2); lL3 = x(3); % expansion of optimized variables
omega = 2*pi*fc; % angular critical frequency
w1 = (L3_des/L1_des)^2; % weight for L1
w2 = (L3_des/C2_des)^2; % weight for C2
L1 = (Z0L * sin(2*pi*lL1 / lambda_gL) % actual inductivity L1 according to (1)

+ Z0C * tan(pi*lC2 / lambda_gC)) / omega

C2 = (1/Z0C * sin(2*pi*lC2 / lambda_gC) % actual capacity C2 according to (3)
+ 1/Z0L * tan(pi*lL1 / lambda_gL)
+ 1/Z0L * tan(pi*lL3 / lambda_gL)) / omega;

L3 = (Z0L * sin(2*pi*lL3 / lambda_gL) % actual inductivity L3 according to (2)
+ Z0C * tan(pi*lC2 / lambda_gC)) / omega;

Q = 1e+18 * (w1*(L1 - L1_des)^2 % the value of the minimized cost function
+ w2*(C2 - C2_des)^2
+ (L3 - L3_des)^2);

The value of the cost function is multiplied by 1018 to reach sufficient precision of the
optimization process, because the inductance and the capacitance reach too small values.
There are some boundaries in options setting for the function fminunc, which contain the level
for the minimal difference of the cost function Q, but it is easier to multiply the value of the
cost function Q by 1018 than setting the boundaries and control parameters of the
optimization.

Exploitation of the artificial neural network to the order estimation of the filter
The order of the filter depends on four parameters: the type of approximation of the

transfer function, the minimal desired attenuation in the stop-band Amin, the maximal ripple
Amax in the pass-band and the selectivity factor k [3]. Considering the filter with one type of
the approximation of the transfer function and keeping one of above numerical parameters
constant (e. g. Amax), we need ANN with two input neurons and with one output neuron.

We create ANN for the estimation of the Chebyshev filter order with pass-band ripple
Amax = 3 dB in the next example. First, we have to compose the set of training patterns [4],
[5]. The training set consists of a matrix of input patterns and of desired responses of ANN.
The matrix of the input patterns includes the combinations of parameters k, Amin a Amax. For
example, for the values of the selectivity factor k = {1,2; 1,6; 2,0} and for the values of
minimal desired attenuation Amin = {10; 15; 20} dB, the training set contains nine patterns
(Tab. I).

Tab. I: Set of training patterns
k [-] 1,2 1,6 2,0 1,2 1,6 2,0 1,2 1,6 2,0

Amin [dB] 10 10 10 15 15 15 20 20 20
Amax [dB] 3 3 3 3 3 3 3 3 3

No matter the elements of the vector Amax are of the value, and therefore the vector is
not used to train the ANN, we exploit Amax for the function rad because this function operates
with vectors. Thanks to this fact, we save a cycle in the MATLAB algorithm. The function
rad computes the order of a filter in accordance with [3] or this function finds the order of the
Bessel filter in the table, which is set together using the program NAF for designing electrical
filters.

We call the function rad with the input in Tab. I. So we get the vector R of nine values.
Each value is the order of the filter in one column in Tab. I. Since the output layer of ANN
contains the neurons with the output function logsig (the output value has to lay in the interval
between zero and one – we need a positive number of the order), the vector of the desired
output of the ANN has to be normalized. In the next step, we create the variable funkce
containing the cells with information about the output function of the neurons in the hidden
and the output layer. Inside the ANN, in the hidden layers, we use tansig as an output function
of each neuron. The function tansig gives a number from the interval between minus one and
plus one. In the next example, the vector vrstvy contains three digits meaning that ANN has
two hidden layers and one output layer. Two neurons are in the first hidden layer, three

neurons are in the second hidden layer, and in the output layer, there is one neuron only. The
example follows:

vrstvy = [2 3 1] % the number of the neuron in the layers of ANN
P = [k; Amin;]; % matrix of input learning patterns
R = rad(k, Amax, Amin, Aprox); % vector of values of the order of filters in Tab. I
Tmax = max(R); % maximal order of the filter – normalization constant
T = R / Tmax; % desired response of ANN
for ii=1:length(vrstvy)-1; % for all hidden layers of ANN

funkce{ii} = 'tansig'; % at the output of neurons are tansig functions
end;
funkce{ length(vrstvy)} = 'logsig'; % neurons in the output layer – output function is logsig

Further, we create the artificial neural network using the function newff implemented in
the Neural Network Toolbox:

net = newff([min(P(1,:)), max(P(1,:)); min(P(2,:)), max(P(2,:));], vrstvy, funkce, algor);

The first input variable of the function newff is a matrix, which has two columns and the
same number of rows as the number of input neurons is. In the first column, minimal values
of input patterns have to be given, and in the second columns, maximal values have to be
given. In the last variable algor, the algorithm for learning the ANN has to be saved [4], [5].
Before training the ANN, we set some parameters of training process:

net.trainParam.show = 10; % showing the state of training after each 10 interations
net.trainParam.epochs = 200; % stop training when the number of iteration is passed
net.trainParam.goal = 10-4; % end of training when learning error drops under the limit

Finally, we run the learning process and we save the trained network and the normaliza-
tion constant of the output of the ANN in a file.

net = train(net, P, T); % learning the ANN
save ('file_name','net', 'Tmax'); % saving learned ANN in a file

Now we describe how to visualize the error of the ANN. We have to create a testing set
of patterns. This set has to be finer-divided than the training set. The approach to getting the
testing set is similar to creating the training set of patterns, described above. Then, we load
the stored ANN and the normalization maximum from the file. We place the testing set to the
input of the ANN by using the function sim implemented in the Neural Network Toolbox, and
then, we compare the response of the ANN with the values of the filter order, which are
determined as described in [3].

load ('jmeno_souboru'); % loading learned ANN and normalizing constant
… % (here has to be created testing set of patterns)
n_vyp = … % and counting the true order
n_sit = Tmax * sim(net, P); % response of ANN and de-normalizing
chyba = abs(n_sit - n_vyp); % difference between the true order and ANN estimation
rel_ch= 100 * chyba ./ n_vyp; % percentage error
chyba_odh = ceil(n_sit) - ceil(n_vyp); % the error of order estimation

Since we are working with the vectors, but we need to visualize the error depending on
two parameters k a Amin, we have to reshape the vectors containing the values of the error into
a matrices. The matrices may be displayed in a 3D graph. The next example expands only the
percentage error of the order estimation by ANN:

rel_Amin_k_X_Amax = reshape(rel_ch, length(k_int)*length(Amin_int), length(Amax_int));
for n = 1:length(Amax_int),

rel_chyba = reshape(rel_Amin_k_X_Amax(:, n), length(k_int), length(Amin_int));
figure;
surf(k_int, Amin_int, rel_chyba');
title(['Percentage error of feedforward ANN, Passband riple ', num2str(Amax_int(n)), ' dB']);
xlabel('k [-]');
ylabel('Amin [dB]');
zlabel('delta(k, Amin) [%]');

end;

The results of order estimation by ANN

The order estimation error of the low-pass prototype with the Chebyshev response, if
the feed-forward ANN is used to the estimation, is quite small. The error of the best ANN is
lower than 5 % in comparison to the equation, which determines the order [3] (Fig. 5, on the
left). This ANN estimated different order in several cases: smaller by one than the formula in
[3] in two cases and higher by one in four cases (Fig. 5 - on the right).

Fig. 5 Percentage error (on the left) and the order estimation error (on the right) of ANN

trained for a filter with Chebyshev response

The order estimation error was increased, when the ANN was learned to estimating the
order of the filter with Bessel response. In this case, we were not reached satisfactory results:
the percentage error rose up to 45 % (Fig. 6, on the left) and the order estimation error rose up
to two orders (Fig. 6, on the right).

Fig 6 Percentage error (on the left) and the order estimation error (on the right) of ANN

trained for a filter with Bessel response

Conclusion

We computed the optimal lengths of the components of a microstrip filter in the first
part of this contribution. The example with the given values was not presented, but in our
case, the sizes of the microstrip inductors and capacitors are in tens and hundreds of milli-
meters. Since we know the approximate original sizes of the microstrip components, which
are very close to the final sizes of these components, we can use an optimization process from
the Optimization Toolbox of MATLAB. This approach is a reliable way to get the desired
values of mentioned sizes.

The aim of the second part of this contribution was to show how to build an ANN and
how to test the error of the ANN for the order estimation of the Bessel low-pass prototype.

The error of the ANN is too high to be suitable for implementing in a program for
designing the microstrip filters. The reason of the very high error is given by the fact that the
ANN for order estimation of the Bessel filter was learned by using integral values of the order
obtained from the program for designing electrical filters NAF instead of learning by a set of
real values, as ANN for the order estimation of the Chebyshev filter was.

Acknowledgements

Research described in this contribution was financially supported by the Czech Grant
Agency (grants 102/01/0571 and 102/01/0573) and by the Czech Ministry of Education (re-
search programs MSM 262200011 and MSM 262200022).

References

[1] Hong, J. S., Lancaster, M. J., Microstrip Filters for RF / Microwave Applications. New
York: John Wiley and Sons. 2001. ISBN 0-4713-8877-7

[2] Šmíd P., Návrh planárních mikrovlnných filtrů. (Design of microwave planar filters).
Diploma thesis

[3] Dostál T., Elektrické filtry. (Electric Filters). Textbook of Brno University of
Technology.2001, ISBN 80-214-0877-4

[4] Černohorský, D., Raida, Z., Škvor, Z., Nováček, Z. Analýza a optimalizace
mikrovlnných struktur. (Analysis and optimization of the microwave structures). Brno:
VUTIUM Publishing, 1999. ISBN 80-214-1512-6.

[5] Demuth, H., Beale, M., Neural Network Toolbox For Use with MATLAB User’s Guide.
(nnet.pdf)

Contact

xsmidp01@stud.feec.vutbr.cz
Department of Radio Electronics
Brno University of Technology
Purkyňova 118
612 00 Brno

