
Graphical User Interface for Design
Stabilizing Controllers

Petr Urban1,2, Michael Šebek1

1Department of Control Engineering, Faculty of Electrical Engineering,
Czech Technical University, Prague

2Institute of Information Theory and Automation,
Czech Academy of Sciences, Prague

Abstract

In this note we show how the problem of finding all stabilizing controllers - PI, PD,

PID can be solved using the Hermite stability criterion. We make GUI - Graphical

User Interface - for simple design of controllers. This report is application-oriented

and therefore it hasn’t much theoretical background.

1 Introduction

Robust control theory has certain tools for design of robust controller intended for control of
systems with uncertain parameters. Design of static output feedback simultaneous stabilization
of scalar plants with uncertain parameters is interesting problem. In these cases when it goes
about only one parameter, the results are available now in [1], [3], [4]. For instance, it is possible
to compute the stability interval, i.e. an interval of values of the uncertain parameter (gain of
the static output feedback) for which the system is stable.

In the case of more then one uncertain parameter, the situation is a lot more difficult from
the theoretical point of view. Nonetheless, in a two or three-parameter case it is possible to take
advantage of some graphical routines available in common CACSD packages and the possible
result is the (2D) or (3D) picture. More n-dimensional picture isn’t good from practical aspect,
i.e. comprehensive, visual orientation.

In case of control loop analysis can finding parameters represents i.e. uncertain parameters
of closed loop characteristic polynomial.

p(s, q, r) = a0(q, r) + a1(q, r)s + ... (1)

+ ai(q, r)s
i, i = 1, ..., N

denote the closed loop characteristic polynomial of degree N , where ai(q, r)s
i are scalar mul-

tivariate polynomials with uncertain parameters q, r. Our objective is to find a region for
parameters q, r for which the closed loop characteristic polynomial is stable.

At this point when it goes about design of control loop (controller) can be these finding
parameters i.e. individual gain of classical dynamic controllers - PI, PD, PID consequently
Ki, Kd, Kp. For which is the control loop stable.

In this report we show how the Hermite polynomial stability criterion in [5] for obtain
parameters of PI, PD, PID controllers can be used. Result from these procedure is the set of
controllers that are stabilizing the plant. The plant is set with external description - transfer
function. The GUI-Graphical User Interface is designed and created using Matlab see [2] with
its basic functions and Polynomial Toolbox see [1].



2 Solution

In solution of our problem we issue from picture Fig. 1 which show general scheme of control
loop.

Figure 1: Closed control loop

Closed control loop transfer function is

CL(s) =
C(s)P (s)

1 + C(s)P (s)
, (2)

where C(s) = y(s)
x(s)

is the controller and P (s) = p(s)
q(s)

is the plant, x(s), y(s), p(s), q(s) are poly-

nomials in variable s. After substitution and rearrangement equation (2) we obtain transfer
function in this form

CL(s) =
p(s)y(s)

p(s)y(s) + q(s)x(s)

denominator of this function is the closed loop characteristic polynomial.

2.1 The Hermite stability criterion

We use the Hermite stability criterion for the stability test and finding uncertain pa-
rameters :
A scalar polynomial r(s) = r0 + r1s + ... + rnsn is stable if and only if the symmetric n × n

Hermite matrix H = [hij] defined by

hij =

i−1
∑

k=0

(−1)k+i−1rkri+j−k−l, i ≤ j

= 0, i + j odd; i, j = 1, 2, ..., n

is positive definite.
For example, when p(s, q, r) is a polynomial of degree 3 and the stability region is the open left
half-plane, matrix H is given by

H =





a2a3 0 a0a3

0 a1a2 − a0a3 0
a0a3 0 a2a3



 . (3)



where subdeterminants

D1 = a2(q, r)a3(q, r)

D2 = a2(q, r)a3(q, r)(a1(q, r)a2(q, r) −

− a0(q, r)a3(q, r))

D3 = a2(q, r)a3(q, r)(a1(q, r)a2(q, r) −

− a0(q, r)a3(q, r))a2(q, r)a3(q, r) −

− a0(q, r)a3(q, r)(a1(q, r)a2(q, r) −

− a0(q, r)a3(q, r))a0(q, r)a3(q, r)

depend only on coefficients of polynomial ai(q, r).

2.2 Building closed loop characteristic polynomial

Matlab implementation of building the closed loop polynomial is follow:

• Polynomial for PI controllers
Controller transfer function is

C(s) =
KI + KPs

s
=

y(s)

x(s)

X represents KP and Y represents KI

a{1} = [’(’ ’(’ p{1} ’).* Y’ ’)’];

while jj <= degree

if jj == degree

a{jj+1} = [’(’ ’(’ p{jj} ’).*X +(’ q{jj} ’)’ ’)’];

else

a{jj+1} = [’(’ ’(’ p{jj+1} ’).* Y +(’ p{jj} ’).*X +(’ q{jj} ’)’ ’)’];

end

jj = jj + 1;

end

• Polynomial for PD controllers
Controller transfer function is

C(s) = KP + KDs =
y(s)

x(s)

X represents KP and Y represents KD

a{1} = [’(’ ’(’ q{1} ’)+(’ p{1} ’).*X’ ’)’]; while jj < degree

a{jj+1} = [’(’ ’(’ q{jj+1} ’)+(’ p{jj+1} ’).*X +(’ p{jj} ’).*Y’ ’)’];

jj = jj + 1;

end

• Polynomial for PID controllers
Controller transfer function is

C(s) =
KI + KP s + KDs2

s
=

y(s)

x(s)



– controller with fixed parametr KP ,
X represents KI and Y represents KD

a{1} = [’(’ ’(’ p{1} ’).*X’ ’)’];

while jj <= degree

if jj == degree

a{jj+1} = [’(’ ’(’ p{jj} ’).*’ num2str(Kp) ’+(’ p{jj-1} ’).*Y +

+ (’ q{jj} ’)’ ’)’];

elseif jj == 1

a{jj+1} = [’(’ ’(’ p{jj+1} ’).*X +(’ p{jj} ’).*’ num2str(Kp) ’+

+ (’ q{jj} ’)’ ’)’];

else

a{jj+1} = [’(’ ’(’ p{jj+1} ’).*X +(’ p{jj} ’).*’ num2str(Kp) ’+

+ (’ p{jj-1} ’).*Y +(’ q{jj} ’)’ ’)’];

end

jj = jj + 1;

end

– controller with fixed parametr KI ,
X represents KD and Y represents KP

Ki = varargin{4};

a{1} = [’(’ ’(’ p{1} ’).*’ num2str(Ki) ’)’];

while jj <= degree

if jj == degree

a{jj+1} = [’(’ ’(’ p{jj} ’).*Y +(’ p{jj-1} ’).*X +(’ q{jj} ’)’ ’)’];

elseif jj == 1

a{jj+1} = [’(’ ’(’ p{jj+1} ’).*’ num2str(Ki) ’+(’ p{jj} ’).*Y +

+ (’ q{jj} ’)’ ’)’];

else

a{jj+1} = [’(’ ’(’ p{jj+1} ’).*’ num2str(Ki) ’+(’ p{jj} ’).*Y +

+ (’ p{jj-1} ’).*X +(’ q{jj} ’)’ ’)’];

end

jj = jj + 1;

end

– controller with fixed parametr KD,
X represents KI and Y represents KP

Kd = varargin{4};

a{1} = [’(’ ’(’ p{1} ’).*X’ ’)’];

while jj <= degree

if jj == degree

a{jj+1} = [’(’ ’(’ p{jj} ’).*Y +(’ p{jj-1} ’).*’ num2str(Kd) ’+

+ (’ q{jj} ’)’ ’)’];

elseif jj == 1

a{jj+1} = [’(’ ’(’ p{jj+1} ’).*X +(’ p{jj} ’).*Y +(’ q{jj} ’)’ ’)’];

else

a{jj+1} = [’(’ ’(’ p{jj+1} ’).*X +(’ p{jj} ’).*Y +

+ (’ p{jj-1} ’).*’ num2str(Kd) ’+(’ q{jj} ’)’ ’)’];

end

jj = jj + 1;

end

where degree is max degree(p(s), q(s)), p(s) and q(s) are input polynomial. Output of these
functions is cell array a{:} where a{jj} are coefficients of the closed loop characteristic poly-
nomial:

cl(s) = a{1}s0 + a{2}s1 + ... + a{jj + 1}sjj, where jj = degree

with uncertain parameters X, Y like controller constants.

2.3 Algorithm

1. In the first step we must compute the Hermite matrix. We compute the determinant DN

and all subdeterminants Di, where i = 1, 2, 3, ..., (N − 1). N is a degree of the Hermite
matrix.

2. We obtained all subdeterminants Di and determinant DN . Now we are going to find all
parameters for which is Hermite matrix positive definite.



3. We make grid for all finding parameters using the standard Matlab function. Then for
each value of the grid we evaluate all Di and DN . From this we obtain sets (matrixes) in
which 1 represents that for this value of polynomial parameter is Di or DN stable and
0 represents that for this value of polynomial is Di or DN unstable. The sets (matrixes)
data type is logical.

4. In this step make the intersection between all sets (matrixes). Hence we obtain the final
set (area) that we need graphically visualize.

5. This step consist of drawing the final set (area) - for it we use standard Matlab graphic
routines i.e. pcolor, shading. In last procedure of this algorithm we draw the zero curves.
Zero curves are boundary where the parameter is crossing from stable to unstable region
and v.v.

3 Graphical interface

In this section we show the GUI for design of controllers. The basic figure is show in Fig. 2.
Now we describe it

Figure 2: GUI for design of stabilizing controllers

Plant serve for input of the transfer function of the plant for which we will design a controller.
Format of input data is polynomial or we can use name of workspace variable (type of
variable must be polynomial). Denominator of the transfer function must be monic.

Type of controller with this item we specify the type of designed controller. For PID con-
troller we must specify the fixed parameter too.

Range for parameters has two possibilities

• Auto - this is the default value of the range 〈−10; 10〉 with step 0.05.

• Manual - if we will specify other range we have two possibilities:

– The same range for both axis

– The different range for axis



Make this is the button for simplify the controller.

Clear All this button serve for erase all input fields.

Current Controller it is only the frame in which is shown the transfer function of the con-
troller.

Figure Menu serve for some operation with:

File is menu item for basic operation with matlab figure (file).

Data in this menu item we can do this

• Get data from figure

• Update data from workspace - update plant fields if are used workspace variables

• Export controller data - export controller to workspace. Before export we must
use Get data from figure to get controller data.

• Export region to figure

Tools here are basic axes function like zoom and edit plot

4 Acknowledgements

This work was supported by the Grant Agency of the Czech Republic grant No. 102/02/0709
and by the Ministry of Education of the Czech Republic under Project ME 546.

5 Conclusion

We try to design simple interactive GUI for design of PI, PD and PID controllers. We notice
that all designed controllers are only in theoretical (ideal) form how you can find it in many
school books and scripts. In the next version of this GUI we will use other forms of controllers
usable in practical cases. Drawing of the final region isn’t simple problem and therefore we use
standard Matlab functions i.e. meshgrid, pcolor, contour etc. It is time-difficult for small step
or large range of parameters. This user interface is always in development and we enjoy every
your remarks to this.

References

[1] PolyX, Ltd. Polynomial Toolbox 3.0, (prerelease), <http://www.polyx.com>.

[2] The MathWorks, Matlab 6, rerelease 13 , <http://www.mathworks.com>.

[3] Henrion, D., Šebek, M., Kučera, V., An Algorithm for Static Output Feedback Simul-
taneous Stabilization of Scalar Plants ,Proceedings of the World Congress on Automatic
Control, IFAC , Barcelona, Spain, July 21-26, 2002.

[4] Henrion, D., Šebek, M., New robust control functions for the Polynomial Toolbox 3.0 ,
May 17, 2002.

[5] Barnett, S., Polynomial and Linear Control Systems.


