
ALGORITHMS FOR INITIALIZATION
OF NEURAL NETWORK WEIGHTS

A. Pavelka and A. Procházka
Institute of Chemical Technology, Department of Computing and Control Engineering

Abstract

The paper is devoted to the comparison of different approaches to initialization
of neural network weights. Most algorithms based on various levels of modifica-
tion of random weight initialization are used for the multilayer artificial neural
networks. Proposed methods were verified for simulated signals at first and then
used for modelling of real data of gas consumption in the Czech Republic.

1 Introduction

Initialization of coefficients of neural networks before their optimization represents a very im-
portant but also complicated research topic. The main problem is to select the global optimum
from all possible local minima on the error surface and to start the optimization from the set
of values as close to optimum as possible to minimize the number of the training cycles. Var-
ious methods including genetic algorithms can be applied in this stage to find initial values of
coefficients. The paper is restricted to the presentation of properties and possibilities of the use
of generators of random numbers in the Matlab environment. The main goal is to find suitable
methods for setting random initial weights for neural networks.

2 Random Numbers in MATLAB

There are two main types of the generation of random values in the Matlab environment [1].
The first one uses uniformly distributed random numbers and arrays produced by the RAND
function (Fig. 1). And the second one is based upon normally distributed random numbers and
arrays generated by the RANDN function (Fig. 2).

Organization of random numbers in Matlab is described in the following example present-
ing results obtained for the random state set to zero and the use of the RAND function:

>> rand(’state’,0); rand
ans =

0.9501

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2000

4000

6000

8000

10000

12000
Histogram of the RAND function

Range of random values

R
at

e

Figure 1: Histogram of the RAND function

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4 Histogram of the RANDN function

Range of random values

R
at

e

Figure 2: Histogram of the RANDN function

generating different random number after each following use of this function. The column vector
of random values can be defined by command

>> rand(’state’,0); rand(5,1)
ans =

0.9501
0.2311
0.6068
0.4860
0.8913

while the row vector of random values can be generated in the similar way using command

>> rand(’state’,0); rand(1,5)
ans =

0.9501 0.2311 0.6068 0.4860 0.8913

and the random matrix can be obtained through function

>> rand(’state’,0); rand(3,3)
ans =

0.9501 0.4860 0.4565
0.2311 0.8913 0.0185
0.6068 0.7621 0.8214

The Neural Network Toolbox [2] provides specific modification of random functions by
commands RANDS, RANDNC and RANDNR. The RANDS is a symmetric random weight/bias
initialization function. The RANDNC is a weight initialization function that generates a random
weight matrix columns of which are normalized to the value of one. The RANDNR is a weight
initialization function that generates a random weight matrix rows of which are normalized to
the value of one.

The RANDS provides uniformly distributed random values symmetric around zero value.
Output of this function is the same as RAND function, but multiplied by two and translated
by one (2 ∗ RAND − 1). Effect of this operation moves the mean µ of generated values to zero
instead of 0.5 of the original function and range of RAND from 〈0, 1〉 to 〈−1, 1〉 as presented in
Figs. 1, 3 and 4.

The RANDNC function is based on the RANDS function, that is normalized by columns.
In the similar way the RANDR function is based on the RANDS function normalized by rows.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

2000

4000

6000

8000

10000

12000
Histogram of the RANDS function

Range of random values

R
at

e

Figure 3: Histogram of the RANDS function

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

2000

4000

6000

8000

10000

12000
Histogram of the 2*RAND−1 function

Range of random values

R
at

e

Figure 4: Histogram of the 2*RAND-1 function

Having a matrix X with elements xij ,

X =

⎡
⎢⎢⎢⎢⎢⎢⎣

x11 · · · x1j · · · x1n
...

. . .
...

...
xi1 · · · xij · · · xin
...

...
. . .

...
xm1 · · · xmj · · · xmn

⎤
⎥⎥⎥⎥⎥⎥⎦

(1)

then normalized matrix by columns XC with elements xC
ij and matrix normalized in rows XR

with xR
ij are defined by relations

xC
ij = xij ·

√
1∑n

j=1 x2
ij

xR
ij = xij ·

√
1∑m

i=1 x2
ij

(2)

Graphical presentation of RANDNR and RANDNC function is shown in Fig. 5 and Fig. 6. Upper
figures show histograms calculated over rows of random matrix and the lower over columns.

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04
0

20

40

60

80

100
Histogram of the RANDNR function − row

Range of random values

R
at

e

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04
0

20

40

60

80

100
Histogram of the RANDNR function − column

Range of random values

R
at

e

Figure 5: Histogram of the RANDNR function

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04
0

20

40

60

80

100
Histogram of the RANDNC function − row

Range of random values

R
at

e

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04
0

20

40

60

80

100
Histogram of the RANDNC function − column

Range of random values

R
at

e

Figure 6: Histogram of the RANDNC function

3 Special Modification

The main algorithm used in the Matlab environment for initialization of two layer neural network
is the Nguyen-Widrow layer initialization function called INITNW. This function is based on
the paper [3]. The Nguyen-Widrow method generates initial weights and bias values for a layer,
so that the active regions of the layers neurons will be distributed approximately evenly over
the input space [2].

The main idea of the Nguyen-Widrow algorithm is as follows. We pick small random values
as initial weights of the neural network. The weights are then modified in such a manner that
the region of interest is divided into small intervals. It is then reasonable to consider speeding up
the training process by setting the initial weights of the first layer so that each node is assigned
its own interval at the start of training. As the network is trained, each hidden node still has
the freedom to adjust its interval size and location during training. However, most of these
adjustments will probably be small since the majority of the weight movements were eliminated
by Nguyen-Widrow method of setting their initial values.

Let’s have two-layer network with one input that is trained to approximate a function of
one variable. This function is to be approximated by the neural network over the region 〈−1, 1〉,
with its length equal to 2. There are H units in the first layer, therefore each of its units will

be responsible for an interval of length 2/H on the average. Since sigmoid(wix + wbi), where wi

and wbi are initial weights while x represent the input, is approximately linear over values

−1 < wix + wbi < 1 (3)
this yields the interval

−1/wi − wbi/wi < x < 1/wi − wbi/wi for wi > 0 (4)
−1/wi − wbi/wi > x > 1/wi − wbi/wi for wi < 0 (5)

which has the length 2/|wi|. Therefore

2/|wi| = 2/H =⇒ |wi| = H (6)

However, it is preferable to have slightly overlapping intervals, and so Nguyen and Widrow
recommend to use |wi| = 0.7H. Then wbi are picked so that the intervals are located randomly
in the region −1 < x < 1. The center of each interval is located at

x = −wbi/wi = uniform random value between −1 and 1 (7)

and so we will set
wbi = uniform random value between −|wi| and |wi| (8)

Let us consider now a single layer of m neurons with p synapses, each including the bias. Then
the output of the jth neuron using transfer function ϕ is defined by relation

yj = ϕ(vj), where vj = wj · x (9)

For an activation function ϕ(v) we can specify its active region v = (vmin, vmax) outside which
the function is saturated. For example, for the hyperbolic tangent we can assume that

v = (−2, +2), tanh(v) ∈ (−0.96, 0.96)

In addition we need to specify the range of input values,

xi = (xi,min, xi,max) for i = 1, . . . , p − 1 (10)

Assume at first that the range of input signals and non-saturating activation potential is (-1, +1).
The initial weight vectors will now have evenly distributed magnitudes and random directions:
for p = 2 the initialization is to generate m random numbers aj ∈ (−1, +1) for j = 1, . . . , m
and then set up weights

W(j, 1) = 0.7
aj

|aj | , W(:, 2) = 0 (11)

For p > 2 the initialisation assumes specification of the magnitude of the weight vectors as

G = 0.7m
1

p−1 (12)

then to generate m random unity vectors aj , that is, generate an m× (p−1) array A of random
numbers, aji ∈ (−1, +1) and normalise it in rows:

aj =
A(j, :)

‖A(j, :)‖ (13)

Using these values it is possible to set up weights

W(j, 1 : p − 1) = G · aj , for j = 1, . . . , m (14)

and bias values

W(j, p) = sgn(W(j, 1)) · G · βj , for βj = −1 : 2/(m − 1) : 1 (15)

Finally, the weights are linearly rescaled to allow different ranges of activation potentials and
input signals. Details can be found in the Matlab script, initnw.m.

Our modification of Nguyen-Widrow method was in the use of active input range v =
〈−2, +2〉 of the given transfer function, in our case hyperbolic tangents and maximal and
minimal value of network’s input. In the Matlab code the P is a matrix of inputs values, S1
and S2 is the number of neurones in the first and in the second layer. The main parts of the
proposed algorithm include the following steps

% evaluation of minimal and maximal values of network’s input

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

Learning Epochs

Le
ar

ni
ng

 E
rr

or

initnw
rand
randn
randnr
randnc
rands
2*rand−1
rand−1
A*rand−A/2
B*rand−B/2

Figure 7: The number of learning epochs after the decrease of the learning error under the
thresholding value of 10

mmP = minmax(P);

% creation of original neural network
net00 = newff(mmP,[S1 S2],{’tansig’,’purelin’});

% the selection and modification (parameter AB) of active input range of the transfer function
active = feval(net00.layers{1}.transferFcn,’active’)*AB;

% specification of the modifying parameter from active input range of transfer function and
maximal and minimal value of network’s input

rnd_lim(1,1:2) = active(1)./(1+mmP(1,:));
rnd_lim(1,3:4) = active(2)./(1+mmP(1,:));
rnd_lim_w = max(rnd_lim)-min(rnd_lim);

% generation and modification of weights and biases for a specific random state
rand(’state’,ijk)
net09.IW{1} = rnd_lim_w*rand(S1,R)-rnd_lim_w/2;
net09.LW{2} = rnd_lim_w*rand(1,S1)-rnd_lim_w/2;
net09.b{1} = rnd_lim_w*rand(S1,1)-rnd_lim_w/2;
net09.b{2} = rnd_lim_w*rand(1,1)-rnd_lim_w/2;

4 Results

Initialization methods described above have been tested and analyzed for real data sets that
represented observations of daily gas consumption measured with the sampling rate of one day.
The verification set consisted of measurements taken in the Czech republic during the winter
period from October the 1st, 1993 till June 30th, 2004. The reference model has been formed
by the two layer neural network with architecture 5-8-1 having sigmoidal and linear transfer
functions in the first and the second layers respectively trained in 100 learning epochs.

Ten algorithms for initialization of weights and bias of such a neural network has been used
with twenty different initial random states. The learning process has been always interrupted
after the epoch in which the learning error decreased under value of 10 with results summarized
in the Table 1 and visualized in Fig. 7. Using this criterium and two types of scoring methods (see
Fig. 8) it was possible to find that the best results have been achieved by the Nguyen-Widrow
method while the worst ones have been obtained by application of the simple unmodified RAND
function.

Another very efficient method for network weights initialization is based upon the modifi-
cation of RAND function using function 2∗RAND−1 providing the same results as the RANDS
function in the Neural network toolbox. Our modification resulting in relation A ∗ rand−A/2,

0

2

4

6

8

10

1.9
1

ini
tn

w

8.458.05

ra
nd

5.2
4.72

ra
nd

n

5.2
4.33

ra
nd

nr

4.2
3.48

ra
nd

nc

4.053.65

ra
nd

s

4.053.65

2*
ra

nd
−1

8.3
7.88

ra
nd

−1

4.4
3.65

A*ra
nd

−A
/2

5.35
4.6

B*ra
nd

−B
/2

S
co

re

Score algr. 1
Score algr. 2

Figure 8: The score achieved by two types of scoring algorithm for comparison of results from
Table 1 (less is better)

where A = 0.72 yields sufficient results as well. On contrary the similar case using network
initialization by function B ∗ rand − B/2, where B=1.43 result in significantly worse network
outputs. Obviously the main reason for this result is the use of RAND − 1 modification where
the range of random numbers is 〈−1, 0〉 and results of this nonsymmetric random range are
summarized in Table 1 as well. According to these observations it is possible to recommend the
use of symmetric range for the generation of random numbers for initial weights and biases of
neural networks.

Table 1: The number of learning epoch after decreasing of the learning error under value 10

ra
nd

(’
st

at
e’

)

in
it

nw

ra
nd

ra
nd

n

ra
nd

nr

ra
nd

nc

ra
nd

s

2*
ra

nd
-1

ra
nd

-1

A
*r

an
d-

A
/2

B
*r

an
d-

B
/2

1 8 100 100 14 12 12 12 100 24 44
2 17 100 100 21 100 18 18 100 27 15
3 8 100 11 21 11 12 12 100 15 23
4 9 100 100 28 20 24 24 47 100 22
5 10 100 18 13 14 15 15 39 13 9
6 16 67 21 15 16 19 19 100 27 21
7 12 100 100 16 18 21 21 100 15 19
8 12 100 24 100 16 67 67 76 24 78
9 8 100 16 17 26 20 20 100 16 33

10 13 46 13 15 32 14 14 100 16 10
11 15 100 19 25 21 18 18 100 14 18
12 15 100 15 38 80 88 88 100 26 67
13 13 100 100 24 20 19 19 50 25 22
14 9 100 22 13 22 24 24 39 69 30
15 15 100 16 14 15 22 22 100 12 22
16 16 100 25 30 18 21 21 100 19 100
17 23 100 100 21 17 15 15 100 14 19
18 77 74 17 100 23 20 20 100 100 100
19 8 100 100 36 11 14 14 100 14 24
20 11 100 17 23 100 21 21 100 16 25

5 Summary

To select initial weights and biases for a given neural network it is possible to recommend their
initialization by an around zero symmetric random numbers. Even better results can be achieved
by the use of the Nguyen-Widrow method for the weights initialization.

References

[1] Anonymous. The MathWorks-Online Documentation. The MathWorks, Inc., Natick, MA,
release 14; online only) edition, 2004. http://www.mathworks.com.

[2] Howard Demuth and Mark Beale. Neural Network Toolbox, User’s Guide, Version 4.
The MathWorks, Inc., Natick, MA, revised for version 4.0.4 edition, October 2004.
http://www.mathworks.com.

[3] Derrick Nguyen and Bernard Widrow. Improving the learning speed of 2-layer neural net-
works by choosing initial values of the adaptive weights. Proceedings of the International
Joint Conference on Neural Networks, 3:21–26, 1990.

Ing. Aleš Pavelka, Prof. Aleš Procházka
Institute of Chemical Technology, Prague
Department of Computing and Control Engineering
Technická 1905, 166 28 Prague 6
Phone.: 00420-2-2435 4198, Fax: 00420-2-2435 5053
E-mail: ales.pavelka@volny.cz, A.Prochazka@ieee.org
WWW: http://dsp.vscht.cz

