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Abstract

The paper presents one of fundamental problems of digital image processing
solving the task of the recovery of corrupred image regions. The first part of
the paper is devoted to two dimensional interpolation using the iterative wavelet
decomposition, thresholding and reconstruction. The second part presents the
algorithm of the two dimensional interpolation using forward and backward pre-
diction by signal model. The final part of the paper provides comparison of
proposed algorithms.

1 Introduction

The paper is devoted to digital image enhancement, which falls within the generic multi-
disciplinary area of information engineering, known as digital signal and image processing [7].

There are many applications in which signals are converted into a digital form and then
digital signal processing methods are applied. In the case of digital image processing, the dig-
ital signal is two-dimensional. This work presents two different approaches for digital image
enhancement problem. The main attention is paid to the digital image artifacts restoration.

The recovery (restoration) of degraded parts (artifacts, blocks, regions) of
the digital image forms the main part of digital image enhancement. There are deterministic
and probabilistic methods described in literature [3, 9] to solve this problem. The deterministic
algorithms are usually based on autoregressive modelling, matrix moving average, or bilinear
interpolation. Probabilistic methods include usually Bayesian modelling. Signals containing
more random components can be more completely described by their probability distributions.
Therefore Bayesian probabilistic methods are important in the analysis of two-dimensional sig-
nals. Iterated Wavelet Interpolation Method (IWIM) forms a new designed method to achieve
this goal. This method is based on the interpolation using wavelet functions, i.e. the input
image is decomposed by the selected wavelet function, treated in the wavelet domain, and then
reconstructed back into the image with recovered corrupted or missing regions.

The methods described further have been developed and verified for simulated two-dimen-
sional signals and then applied to processing of real biomedical images of the human brain
obtained by the magnetic resonance method. All resulting algorithms are verified in the com-
putational and visualization Matlab environment providing tools for remote signal processing
using Matlab web server and computer network.

2 Principles of Discrete Wavelet Transform

Wavelet transforms (WT) provide an alternative to the short-time Fourier transform (STFT) for
non-stationary signal analysis [2]. Both the STFT and the WT result in signal decomposition
into two-dimensional function of time and frequency respectively scale. The basic difference
between these two transforms is in the construction of the window function which has a constant
length in the case of the STFT (including rectangular, Blackman and other window functions)
while in the case of the WT wide windows are applied to low frequencies and short windows
for high frequencies to ensure constant time-frequency resolution. Local and global signal ana-
lysis can be combined in this way. Wavelet functions used for signal analysis are derived from
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for discrete parameters of dilation a=2m and translation b=k2m. Wavelet dilation corresponds to
the spectrum compression. The most common choice includes Daubechies wavelets even though
their frequency characteristics stand for approximation of band-pass filters only. On the other
hand harmonic wavelets introduced in [6] can have broader application in many engineering
problems owing to their very attractive spectral properties.

3 Wavelet Decomposition and Reconstruction of Images

The principle of image wavelet decomposition [10] is presented in Fig. 1 for an image matrix
[G(n, m)]N,M . Any one-dimensional signal can be considered as a special case of an image having
one column only.
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Figure 1: Principle of the 2-D wavelet de-
composition followed by downsampling
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Figure 2: Principle of the backward 2-D
wavelet reconstruction

The decomposition stage includes the processing of the image matrix by columns at
first using wavelet (high-pass) and scaling (low-pass) function followed by row downsampling by
factor D in stage D.1.

Let us denote a selected column of the image matrix [G(n, m)]N,M as signal {x(n)}N−1

n=0
=

[x(0), x(1), ..., x(N−1)]T. This signal can be analyzed by a half-band low-pass filter represented
by the scaling function with its impulse response

{l(n)}L−1

n=0
= [l(0), l(1), · · · , l(L − 1)]T (2)

and corresponding high-pass filter represented by the wavelet function based upon impulse re-
sponse

{h(n)}L−1

n=0
= [h(0), h(1), · · · , h(L − 1)]T (3)

The first stage presented in Fig. 1 assumes the convolution of a given signal and the appropriate
filter for decomposition at first by relations

d0(n) =

L−1
∑

k=0

l(k)x(n − k) d1(n) =

L−1
∑

k=0

h(k)x(n − k) (4)

for all values of n followed by subsampling by factor D. In the following decomposition stage
D.2 the same process is applied to rows of the image matrix followed by row downsampling.
The decomposition stage results in this way in four images representing all combinations of
low-pass and high-pass initial image matrix processing.



The reconstruction stage shown in Fig. 2 includes row upsampling by factor U at first
and row convolution in stage R.1. The corresponding images are then summed. The final
step R.2 assumes column upsampling and convolution with reconstruction filters followed by
summation of the results again.

In the case of one-dimensional signal processing, steps D.2 and R.1 are omitted. The
whole process is called signal/image decomposition and perfect reconstruction using D=2 and
U=2.

4 Image Artifacts Restoration Using Wavelet Transform

Image artifacts restoration represents a basic problem in image processing with many different
applications including engineering, reconstruction of missing data during their transmission and
enhancement of biomedical structures as well [11]. This problem occurs also in filling-in blocks
of missing or corrupted data. The following method is based on the two-dimensional discrete
wavelet transform approach. Iterated interpolation [4] based upon the wavelet transform forms
the new method designed here. This method is verified for simulated data and then applied to
processing of real magnetic resonance images. Sum of Squared Errors (SSE), Peak Signal-to-
Noise Ratio (PSNR), and subjective aesthetic notion are the criteria of the consistency between
the original image and image after the restoration.

We can view a sequence of lost samples as the result of a particular noise process acting on
the original signal. However, unlike the traditional case, this noise process is not uncorrelated
with the original signal. The designed method comes out from the signal wavelet denoising,
which tries to keep transform coefficients of high PSNR while zeroing out coefficients having
lower PSNR. Our primary assumption in this algorithm is that the transformation used to
generate the wavelet transform coefficients mostly ensures that if vector c is hard-thresholded
to zero with δ ∼ σe, then with high probability |ĉ| << |e|, i.e., hard-thresholding of c removes
more noise than signal by the following relation

c(k)=

{

c(k) if |c(k) |> δ

0 if |c(k) |≤ δ
(5)

where δ is a threshold limit, c is a vector of thresholded coefficients, c is a vector of wavelet
coefficients of the signal containing an additive noise e, ĉ is a vector of wavelet coefficients of
the signal without noise, and σe is a variance of noise.

The evaluation of the threshold limit δ is still in development process. It is possible to
find some recommendations [1] for an estimation of δ, but precise analytic or empirical formula
does not exit yet.

For digital biomedical images the following two approaches of a threshold limit estimation
have been used:

• Global threshold limit δ = σ
√

2 ln(N×M),
where σ is a variance of the wavelet transform coefficients in all decomposition branches,
and N×M is the size of the processed image

• Threshold limit of an i-th branch δi = σi

√

2 ln(N×M) for i = 1, 2, · · · , L,
where σi are variances of the wavelet transform coefficients in each decomposition branch
i separately, and L is a number of wavelet decomposition branches

This algorithm makes changes just to the lost sequence of samples by the wavelet trans-
form coefficients hard-thresholded to zero. When the value of the lost samples is changed,
we can continue to evaluate these samples again. Input signal for the wavelet decomposition,
hard-thresholding, and backward wavelet reconstruction, is a result of the previous iteration.



The algorithm is repeated until the SSE value between the restored and the original signal is
acceptably low or required PSNR value is achieved.

This proposed algorithm has been applied the real MR image of a human brain. Fig. 3
presents the wavelet decomposition of the original corrupted MR image (see Fig. 3(a)) into one
decomposition level (Fig. 3(b)) using the Daubechies wavelet function of the 8th order. Fig. 3(d)
shows the wavelet coefficients and modified, i.e. thresholded wavelet coefficients. Restored image
(after the first iteration) can be seen in Fig. 3(c).
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Figure 3: The first iteration of the real MR image restoration process presenting (a) given
corrupted image, (b) image decomposition into one level, (c) backward wavelet reconstruction,
and (d) wavelet, scaling coefficients

The final restored MR image with low acceptable SSE and high PSNR has been obtained
after 50 iterations of the iterative wavelet interpolation algorithm. Fig. 4(a) presents the original
corrupted image and Fig. 4(b) restored image. Evolution of the PSNR and SSE values during
the whole restoration process is shown in Fig. 4(c),(d).

The best result of the MR image recovery has been obtained using the Daubechies wavelet
function of the 8th order (see Table 1) for the wavelet decomposition into one level. Coefficients
in the wavelet domain have been modified by the hard-thresholding method and reconstructed
back to the real image.

Decomposition method PSNR1 PSNR2 SSE1 SSE2
(wavelet function) [dB] [dB]

1 Haar 42.8529 1.2617
2 Daubechies of the 2nd order 44.2262 0.9197
3 Daubechies of the 4th order 45.6256 0.6663
4 Daubechies of the 8th order 32.0515 46.8670 15.1740 0.5007
5 Symmlet of the 2nd order 44.2262 0.9197
6 Symmlet of the 4th order 45.7660 0.6451
7 Symmlet of the 8th order 46.4374 0.5527

Table 1: Peak Signal-to-Noise Ratio (PSNR) and Sum of Squared Errors (SSE) of the real MR
image containing corrupted regions (PSNR1, SSE1) and the same MR image after the recovery
process (PSNR2, SSE2) reconstructed by the selected wavelet functions after 350 iterations

This method is sufficient in the case of a limited number of interpolated pixels. If the
corrupted block is large (it usually means more than 100 pixels), it is necessary to divide this
region into more layers and to recover them step by step. Then the recovery algorithm starts
by grouping the interpolated pixels (pixels in the lost block) into layers as shown in Fig. 5.
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Figure 4: Restoration of the real MR image using the iterated wavelet interpolation method
presenting (a) given corrupted image, (b) restored image (after 50 iterations), (c) evolution of
the Peak Signal-to-Noise Ratio (PSNR) value, and (d) evolution of the Sum of Squared Errors
(SSE) value during the iteration process

Layers are recovered in stages with each layer recovered by mainly using the informa-
tion from the preceeding layers, that is, layer 0 = image is used to recover layer 1, layers 0
and 1 are used to recover layer 2 etc. The layer grouping in Fig. 5 is of course one possibility,
and many different groupings can be chosen depending on the size and shape of the lost blocks.
Beyond the grouping into layers and associated recovery of layers in stages, the main steps of
the algorithm amount to evaluating several complete transforms over the target layer, selective
hard-thresholding of wavelet transform coefficients, inverse transforming to generate intermedi-
ate results, and finally clipping to obtain the recovered layer. Starting with an initial threshold
δ0, these steps are carried out iteratively where at each iteration the threshold is evaluated
again and the layers are recovered to finer detail using the new threshold. Prior to the first
iteration, pixels in the lost block are assigned initial values, usually, the mean value computed
from the surroundings of the outer boundary of layer 1.

Figure 5: Layers of pixels in the recovery algorithm



% Name: iwim MR

% Program Description: computes the real MR image recovery

% using the IWIM method, PSNR and SSE values

% Output: corrupted MR image, recovered image after 350

% iterations, PSNR and SSE values of the corrupted

% and recovered images, evolution of the PSNR and SSE

% values during the iterative calculation

% iteration process of the wavelet interpolation method

for i=1:350

% threshold limits calculation

[thr,sorh,keepapp] = ddencmp(’den’,’wv’,x);

% wavelet decomposition, hard-thresholding,

% and backward wavelet reconstruction using

% the selected wavelet function

[xd,CXC,LXC,PERF0,PERFL2] = wdencmp(’gbl’,x,’db8’,1,thr,sorh,keepapp);

% output is a new input in the next iteration

x( XMASK)=xd( XMASK);

% pixels value limitation

xmask1=x>=0; x=x.*xmask1;

xmask2=x>1; x=x.*(1-xmask2)+xmask2;

% SSE and PSNR values evolution

e(i)=sumsqr(x noncorrupted-x);

psnr image(i)=psnr(x noncorrupted,x);

end

% PSNR and SSE values

psnr orig=psnr(x noncorrupted,x corrupted)

psnr after=psnr(x noncorrupted,x)

sse orig=sumsqr(x noncorrupted-x corrupted)

sse after=sumsqr(x noncorrupted-x)

Figure 6: The main part of the Matlab program for image artifacts restoration using the iterative
wavelet interpolation method

5 Image Artifacts Restoration Using Signal Modelling

Signal Modelling forms a quite different approach to image artifacts restoration than the 2-D
transform methods. It is based upon forward and backward prediction by the autoregressive
modelling applied to columns and rows in the neighbourhood of the reconstructed image area.

The predictive image modelling, also described in [5], uses an autoregressive method for
the image blocks reconstruction. This algorithm forms the following steps:

• Estimation of autoregressive parameters for signal prediction in each image
row using image values to the left and to the right of the corrupted block boundary

• Estimation of autoregressive parameters for signal prediction in each image
column using image values to the top and to the bottom of the corrupted block boundary

• Prediction of each pixel inside the corrupted image block using models described in
the previous steps and averaging of resulting values

The method is based upon prediction using an autoregressive (AR) model for forward
prediction described by the following relation

z(m, i) =
K

∑

j=1

aj z(m, i−j) + u(m, i) (6)



for i = k+1, k+2, · · · , where aj are the AR parameters, K represents model order and u(m, i)
is the excitation including the model error.

Autoregressive model for backward prediction is defined as

z(m, i) =
K

∑

j=1

bj z(m, i+j) + u(m, i) (7)

for i = l−1, l−2, · · · , where bj are the AR parameters.

Construction of the autoregressive (AR) model is possible by the following algorithm.
Consider a signal {x(i)}N

i=1
, where the successive M values starting with index l forming a se-

quence
{x(l), x(l + 1), . . . , x(l + M − 1)} (8)

have been lost or corrupted.

In this case we try to use for the restoration of these samples forward and backward
prediction using preceding samples and succeeding samples respectively. Let NW and NE be
the number of samples on the left (west) and right (east) side of the missing segment to be
used for the restoration of the signal. Then, the forward predicted signal x̂W (i) is based on
the samples

{x(l − 1), x(l − 2), . . . , x(l − NW )} (9)

and backward predicted signal x̂E(i) on the samples

{x(l + M), x(l + M + 1), . . . , x(l + M + NE − 1)} (10)

This method uses both forward and backward prediction to achieve better results for
the missing or corrupted segment of a signal. A condition of stationarity of a given signal is not
necessary.

Construction of the AR models for 2-D signals is possible to find in [8]. Matlab code for
image artifacts restoration using the autoregressive modelling of the signal can be seen in Fig. 7.

% Name: arm

% Program Description:Designs AR models for forward and backward prediction

% in horizontal and then in vertical direction, uses these

% models for an estimation of the missing image region

% Output: PSNR of the corrupted and recovered image, plot

% of the original, corrupted, and recovered image

% order of the AR model

Mh=M;Mv=M;kh=7;kv=7;nh=lh+Mh-1;nv=lv+Mv-1;km=170;

% horizontal direction

for j=1:Mv

theta1=ar(X(lv+j-1,lh-km:lh-1)’,kh,’fb’); % matrix A

% vector of AR parameters in horizontal direction (foward prediction)

a(j,:)=th2poly(theta1); a(j,:)=-a(j,:);

aa(j,:)=[a(j,:) zeros(1,(Mh-size(a,2)))];

r(j,:)=[-1 zeros(1,Mh-1)]; A(:,:,j)=toeplitz(aa(j,:),r(j,:));

theta2=ar(X(lv+j-1,nh+km:-1:nh+1)’,kh,’fb’); % matrix B

% vector of AR parameters in horizontal direction (backward prediction)

b(j,:)=th2poly(theta2); b(j,:)=-b(j,:); bb(j,:)=[b(j,:) ...

zeros(1,(Mh-size(b,2)))];

B(:,:,j)=toeplitz(r(j,:),bb(j,:));

· · ·



% definition of matrix W (horizontal direction)

for i=1:kh

W(i,:,j)=[zeros(1,i) X(lv+j-1,lh-1:-1:lh-1-kh+i)];

end

for i=kh+1:Mh; W(i,:,j)=zeros(1,kh+1); end

% definition of matrix E (horizontal direction)

for i=1:Mh-kh; E(i,:,j)=zeros(1,kh+1); end

for i=Mh-kh+1:Mh;

E(i,:,j)=[zeros(1,Mh+1-i); X(lv+j-1,nh+1:nh+i-Mh+kh)];

end

end

% vertical direction

for j=1:Mh;

theta3=ar(X(lv-km:lv-1,lh+j-1),kv,’fb’); % matrix C

% vector with AR parameters in vertical direction (foward prediction)

c(j,:)=th2poly(theta3); c(j,:)=-c(j,:); cc(j,:)=[c(j,:)

zeros(1,(Mv-size(c,2)))]; r(j,:)=[-1 zeros(1,Mv-1)];

C(:,:,j)=toeplitz(cc(j,:),r(j,:));

theta4=ar(X(nv+km:-1:nv+1,lh+j-1),kv,’fb’); % matrix D

% vector with AR parameters in vertical direction (backward prediction)

d(j,:)=th2poly(theta4); d(j,:)=-d(j,:); dd(j,:)=[d(j,:)

zeros(1,(Mv-size(d,2)))]; D(:,:,j)=toeplitz(r(j,:),dd(j,:));

% definition of matrix S (vertical direction)

for i=1:kv

S(i,:,j)=[zeros(1,i) X(lv-1:-1:lv-1-kv+i,lh+j-1)’];

end

for i=kv+1:Mv; S(i,:,j)=zeros(1,kv+1); end

% definition of matrix N (vertical direction)

for i=1:Mv-kv; N(i,:,j)=zeros(1,kv+1); end

for i=Mv-kv+1:Mv

N(i,:,j)=[zeros(1,Mv+1-i); X(nv+1:nv+i-Mv+kv,lh+j-1)’];

end

end

% calculation of G and Y matrices

for j=1:Mh

G1(:,:,j)=A(:,:,j)’*A(:,:,j)+B(:,:,j)’*B(:,:,j);

G2(:,:,j)=C(:,:,j)’*C(:,:,j)+D(:,:,j)’*D(:,:,j);

y1=-A(:,:,j)’*W(:,:,j)*a(j,:)’-B(:,:,j)’*E(:,:,j)*b(j,:)’;

y2=-C(:,:,j)’*S(:,:,j)*c(j,:)’-D(:,:,j)’*N(:,:,j)*d(j,:)’;

XXn1(j,:)=y1’*inv(G1(:,:,j));

XXn2(j,:)=y2’*inv(G2(:,:,j));

end

XXn2=XXn2’;

% arithmentic mean of the interpolation in horizontal and vert. directions

XXn=(XXn1+XXn2)./2;

% restoration of the corrupted image

Xr=X; Xr(lv:lv+M-1,lh:lh+M-1)=XXn;Mn=101;

Figure 7: The main part of the Matlab program for image artifacts restoration using the AR
modelling of the signal



6 Results and Conclusions

Each method has its advantages for the recovery of specific image artifacts or replacement of
image missing parts. To compare two designed methods described above in practical usage, one
corrupted region of the MR image has been restored using designed algorithms. Table 2 presents
an evaluation of the restoration process using the PSNR and SSE values. This table can look
upon from the point of view of an objective criteria of the restoration evaluation. Another point
of view forms a subjective aesthetical notion of specialists in the appropriate field. In the case of
MR images the restoration results have been discussed with doctors of the Královské Vinohrady
hospital in Prague.

Recovery Method PSNR1 [dB] PSNR2 [dB] SSE1 SSE2

1 Autoregressive Modelling 52.83 0.0532
2 Matrix Moving Average 52.14 0.0613
3 Bilinear Interpolation 50.41 0.4258
5 Bayesian Modelling 44.28 52.83 8.5528 0.0541
7 Autoregressive Modelling

after the Wavelet Decomposition 52.94 0.0537
9 Iterated Wavelet Interpolation 53.30 0.0526

Table 2: Comparison of selected designed image restoration methods including Peak Signal-
to-Noise-Ratio (PSNR) and Sum of Squared Errors (SSE) of the real MR image containing
one corrupted region (PSNR1, SSE1) and the restored MR image using selected restoration
methods (PSNR2, SSE2)

Simple methods based upon a limited region of interest are very fast and easy to implement
but they provide good results for a restoration of low-frequency components only. In the case we
need to restore images of higher frequency components, it is useful to apply more complicated
linear, nonlinear or statistical models both in the original image domain or after the application
of the appropriate transform functions.

Each 2-D signal requires a different approach for its processing according to its features,
therefore it is difficult to decide, which algorithm is more applicable for digital images restora-
tion even we have images of one sort (in this case MR images). The success of restoration
and the choice of restoration method depend on:

• The sort of digital images

• The character of signal components contained in the image (periodical, random)

• The size of the corrupted region

• The shape of the corrupted region

• The character of signal components in the surrounding of the corrupted region

The right choice and usage of the restoration algorithm should respect all the points
mentioned above to get the best digital image regions restoration.

Acknowledgments

The work has been supported by the research grant of the Faculty of Chemical Engineering of
the Institute of Chemical Technology, Prague No. MSM 223400007. All real MR images have
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