
27

PROGRAMS FOR FAST NUMERICAL INVERSION OF LAPLACE TRANSFORMS
IN MATLAB LANGUAGE ENVIRONMENT

��������	�
���
�∗

Institute of Theoretical and Experimental Electrical Engineering
Faculty of Electrical Engineering and Computer Science

Brno University of Technology

Abstract

The paper deals with methods for a fast numerical inversion of Laplace transforms
developed to run in Matlab language environment. The methods are based on the application
of fast Fourier transformation followed by so-called ε–algorithm to speed up the convergence
of infinite complex Fourier series. Especially in conjuction with capabilities of the Matlab
language created programs seem to be very fast besides they are accurate enough as weel.
Examples of the application for a time-domain analysis of transmission lines are presented
after respective versions of procedures are explained.

1. Introduction

The methods for numerical inversion of Laplace transforms (NILT) rank among ones
which are widely used for time-domain simulations e.g. an analysis of transient phenomena in
systems containing elements with distributed parameters. From many developed methods
those based on FFT and ε–algorithm application seem to be convenient from point of view
both desired speed and accuracy [1, 2]. Particularly utilizing capabilities of Matlab language
the numerical methods under consideration show being very fast to invert not only simple
Laplace transforms but also rather complicated systems containing e.g. multiconductor
transmission lines. This is enabled due to many operations in Matlab language can run in
parallel on multidimensional arrays without necessity to use outer loop structures which leads
to essential saving CPU time. In this paper the method elaborated in [1, 2] is summarized and
some generalized program versions never published before are also presented. After
explaining respective version of a numerical procedure examples of its application are given.

2. Theoretical foundations

On principle to find the original ���� to a Laplace transform ���� the definition formula
of ILT is considered like

∫
∞+

∞−

=
jc

jc

stdsesF
j

tf)(
2

1
)(

π
 , (1)

under basic assumption ����� α≤�� , K real positive, α as an exponential order of the real

function ���� , 0≥t , and ���� defined for α>����� .

Τhe task is to evaluate the eq. 1 numerically not only accurate enough but also very fast on
a whole given interval 〉〈 ���� . The way of the solution was proposed in [1] where the FFT

algorithm is applied in order to ensure the high speed of computation, and the method has
been improved considerably from point of view getting more accuracy by using ε–algorithm
in [2].

28

Following these results an approximate formula in a discrete form can be written as

	����
�
�

�

�

���	�

�

�� −= ∑
∞

=

 , (2)

for
��
�� −= �� � , with

��
��
�
�� � = , ��
� �	

π

Ω= , �� Ω−= �
���
 , Ω−= ��

�

 �� , (3)

where
 and ��
 �
π=Ω are sampling periods in original and transform domains,
respectively. It can be proven the eq. 2 corresponds to a Fourier series approximation of the
original ���� when the error can theoretically be controlled on the interval)�
� ��∈ .

Practically, however, to suppress an increased error at the end of this interval the required
maximum time is supposed to be
��� �
� −= , with
�� = as the number of resultant

computed points, which leads to the condition of choosing ��� �

� −=Ω π . The coefficient

c can be setted using the formula

��� ��

π

α Ω−≈ , (4)

where �� denotes a desired relative error. To minimize the error towards this theoretical
value the infinite sum in eq. 2 must be evaluated as much accurately as possible. The solution
then consists of three steps. Firstly this sum is evaluated using only � first terms when a FFT
algorithm can be applied supposing ��
= , m integer. Secondly after truncating the result of
the FFT operation to have only a length M the ε–algorithm is applied to give a precision to
the resultant sum. The ε–algorithm uses only a few additional terms above those N used by
the FFT algorithm, however, the sum becomes as if were evaluated using greatly more terms.
Finally the result of the ε–algorithm application is substituted into the eq. 2 to finish the
computation. Expressing these operations in vector form the eq. 2 can be rewritten as

	�	������
�
�

�

���� ��
 ���� −= E� (5)

where particular vectors of upper indexed lengths are created according to the eq. 3, namely
for
��
�� −= �� � ,
��
�� −= �
 � . Especially �

�� is the M–element constant vector of

values c. The ��	E designates an operator of the ε–algorithm [3] (including the operation of
�� → vector length reduction), and the symbol � means Hadamard product of matrices (in

Matlab language called as element-by-element product). The principle of the ε–algorithm can
be explained by means of a lozenge diagram in Fig.1.

Fig.1 The ε-algorithm lozenge diagram

���

�

���

���

�
�

���

�

�
�

�

�
�

���

���

�

�
�

�
�

�

���

�

�
�

�
�

���

�
�

�

���

�
�

���

�

ε
εε

εε
εεε

εεε
εεε

εε
εε

ε

−

−

−

−

29

The first column is formed with ��

� �=��

ε , ���
�
=� , where �
� means an M-element zero

vector. The second column represents partial sums computed recurrently as

�

����

�� � ++
+ += �

��

�

�
�

� εε , �
�
��=� , (6)

where �

� is an M–element vector created according to the exponential term �

� in eq. 3, for

��
�� −= �� � and a given n, and the initial ���

�ε term is the result of the FFT operation

truncated to have the length M. The leftover columns are computed using the formula like

���
��
�

��

 �� −++
−+ −+= �

�

�

�

�

�

�

� εεεε , �
�
��� =�� , (7)

when the inversion operation is supposed to run component-wise. Thus the sequence of
successive approximations ����

���

�

���

���

� εεε converges usually much more quickly than the

original sequence of partial sums. Supposing to start a computation using

 +� partial sums
the ���

�ε term is the required result of the ε-algorithm. However, this algorithm is under a
numerical instability if P is chosen too big. From many experiments it seems P = 2 or 3 are
good choices. The first case is completely shown in Fig.1. This lozenge diagram will further
be utilized to explain generalized versions of the NILT procedure, see later.

3. Matlab language implementation – basic version

The Matlab functions intended to invert transforms defined by subfunctions whose names
are typed in the form of strings are presented. These subfunctions can be defined at the end of
the body of respective NILT M-file function or in separate M-files under necessary names.

%************************ NILT–FUNCTION DEFINITION (basic version) **********************%

function [ft,t]=nilt(F,tm);
alfa=0; M=256; P=2;
N=2*M; wyn=2*P+1;
t=linspace(0,tm,M);
NT=2*tm*N/(N-2); omega=2*pi/NT;
c=alfa+25/NT; s=c-i*omega*(0:N+wyn-2);
Fsc=feval(F,s);
ft=fft(Fsc(1:N)); ft=ft(1:M);
for n=N:N+wyn-2
 ft(n-N+2,:)=Fsc(n+1)*exp(-i*n*omega*t);
end
ft1=cumsum(ft); ft2=zeros(wyn-1,M);
for I=1:wyn-2

ft=ft2+1./diff(ft1);
 ft2=ft1(2:wyn-I,:); ft1=ft;
end
ft=ft2+1./diff(ft1); ft=2*real(ft)-Fsc(1);
ft=exp(c*t)/NT.*ft; ft(1)=2*ft(1);
plot(t,ft); xlabel('t'); ylabel('f(t)'); grid on;

%******************************* F1–SUBFUNCTION DEFINITION ******************************%

function f=F1(s) % subfunction F1 is called like this: nilt(‘F1’,tm);
 f=F(s); % F(s) transform evaluation

%**%

In the first line of the body of the function the exponential order α, the number of points to be
plotted M = 2m, m integer, and P parameter of the ε-algorithm can be changed if necessary.

30

The eq. 4 is incorporated into the function to ensure the value
��� −=�� which means the

relative error about 10-11 could be expected if the ε-algorithm is efficient enough. In [2] there
have been tested relative errors for several common transforms with known originals and
confirmed that such an error can really be achieved with the exception of a vicinity of
discontinuities and the origin of the interval. In the body of a subfunction it is suitable to use
the operations .*, ./ and .^ for a multiplication, division and power, respectively, i.e. those
running on element-by-element basis, to make the evaluation as fast as possible. All common
built-in functions run by this way automatically. Othervise a loop structure would have to be
used to cycle through all the complex frequency elements of the vector variable s leading to
much slower computation.

3.1. Examples of the application

The presented program will be used for the time-domain simulation of lossy transmission
lines. Suppose the operator model of the linear system with a transmission line in Fig.2.

The line is uniform of the length l and is described with per-unit-length primary parameters

�� , �� , �� and �	 . The voltage and the current can be expressed in operator forms as

��

�����

��

�

�
���

���

����

��
�����

��

�
���

��

����

��

����

��
����� γ

γγ

ρρ
ρ

−

−−−

−
+

⋅
+

= , (8)

��

�����

��

�
���

���

����
�����

��

�
���

��

����

��

����

����� γ

γγ

ρρ
ρ

−

−−−

−
−

⋅
+

= , (9)

where

������ ������� = (10) , ������ ����� =γ (11)

are the characteristic impedance and the propagation constant, respectively, with

���� ����� += (12) , ���� �	��� += (13)

as the series impedance and the shunting admittance, respectively, and

����

����
��

����

����
�

��

��

+
−

=ρ (14) ,
����

����
��

����

����
�

�

�

+
−

=ρ (15)

designate the reflection coefficients at the near and far ends of the line, respectively.

In general case the time-domain solution cannot be expressed in an analytical form,
therefore, the only way is to use a numerical method. Consider the line has a length
=� and
per-unit-length primary parameters in normalized forms ���� =� , �� =� ,
��� =� ,
� =	 .

The terminating impedances are ��� =��� ,
���
 =�� , the input voltage has the form of

Zi(s)

Z2(s)V1(s) V2(s)

Vi(s)

I1(s) I2(s)

0 x

V(s,x)

I(s,x)

l

Fig. 2 Linear system with lossy transmission line

31

a sin square puls �������

���� π= ,
� ≤≤ � , ��� =��� otherwise, with the Laplace transform

���

�
�

��

π
π

+
−=

−

��

�
��

�

� . (16)

Then, for example, in order to find the time-domain solution for the voltage in the middle of
the transmission line, i.e. to find �
�� ��� , a called subfunction can be of the form as follows

%****************************** Vx–SUBFUNCTION DEFINITION *******************************%

function f=Vx(s)
l=1; x=l/2;
Ro=0.5; Lo=4; Go=0.1; Co=1;
Vi=2*pi^2*(1-exp(-s))./s./(s.^2+4*pi^2);
Zi=0; Z2=10;
Z=Ro+s*Lo; Y=Go+s*Co;
Zv=sqrt(Z./Y); gam=sqrt(Z.*Y);
ro1=(Zi-Zv)./(Zi+Zv); ro2=(Z2-Zv)./(Z2+Zv);
Vx=Vi.*Zv./(Zi+Zv).*(exp(-gam*x)+ro2.*exp(-gam*(2*l-x)))./(1-ro1.*ro2.*exp(-2*gam*l));
f=Vx;

%***%

To compute and plot this waveform e.g. on the interval 〉∈

���� the main NILT function is
called with the input parameters like this: nilt(‘Vx’,12). Similarly a subfunction for the current
computation can be created replacing Vx for Ix according to eq. 9. The results are in Fig.3,
the CPU times were under 50ms on PC with Pentium II 266MHz processor.

The presented functions can easily be modified by various ways. For example, in order to
simplify entering desired x–coordinate another input parameter can be introduced, and so on.

4. Generalized NILT function – vector version

In the following the above described basic version of NILT function will be generalized to
be able to invert Laplace transforms in vector form. It can advantageously be utilized in the
cases like above presented when calling main NILT function need not be repeated, and when
respective transforms are evaluated in advance. The own inversion process runs then in
parallel for all the precalculated transforms having been formed into a vector. Suppose the
transform ���� in the definition formula 1 is replaced with a column vector like

�� ������� ������������

�=� . (17)

Fig.3 Voltage and current waveforms in the middle of the line

0 2 4 6 8 10 12
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

t

v(
t)

Voltage in the middle of the line

0 2 4 6 8 10 12
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

t

i(
t)

Current in the middle of the line

32

Then an approximate formula in a matrix form corresponding to the eq. 5 can be written as

	�	������
�
�

�

�������� ��
 ××

><

×× −= ���� E� (18)

where all the terms are matrices of upper indexed dimensions computed according to eq. 3,
but formed for all the components ����� , �� ��
�
 �= , of the vector ����

� . The subscript
><
 means the FFT operation runs along the 2nd dimension (columns) but in parallel for all

the rows. The ε–algorithm runs by the same way as explained earlier, but then all the terms in
the lozenge diagram in Fig.1 are �� × matrices. Thus ���

�

×= �
��

ε , ���
�
=� , zero matrices
form the first column of the lozenge diagram, the second column is formed with partial sums
computed recurrently as follows

�

��

�

��

��

++
+ ⊗+= ��

��

�

�
�

� εε , �
�
��=� , (19)

where �

� is the J-element column vector in eq. 17 evaluated for a given n according to eq. 3,
�

� is the M–element row vector created as explained in par. 2, and the initial ���

�ε term is the

result of the FFT operation truncated to have the size �� × . Finally a symbol ⊗ designates
so-called Kronecker tensor product of matrices.

The corresponding Matlab function contains the third parameter ‘pl’ typed in the form of
the string to choose a method of plotting – either into a single figure as multiple plot (‘pl1’) or
into necessary number of separate figures as individual plots (‘pl2’) .

%********************** NILTV–FUNCTION DEFINITION (vector version) *********************%
function [ft,t]=niltv(F,tm,pl);
global ft t;
alfa=0; M=256; P=2;
N=2*M; wyn=2*P+1;
t=linspace(0,tm,M);
NT=2*tm*N/(N-2); omega=2*pi/NT;
c=alfa+25/NT; s=c-i*omega*(0:N+wyn-2);
Fsc=feval(F,s);
ft=fft(Fsc(:,1:N),[],2); ft=ft(:,1:M);
for n=N:N+wyn-2

ft(:,:,n-N+2)=kron(Fsc(:,n+1),exp(-i*n*omega*t));
end
ft1=cumsum(ft,3); ft2=zeros(size(Fsc,1),M,wyn-1);
for I=1:wyn-2

ft=ft2+1./diff(ft1,1,3);
 ft2=ft1(:,:,2:wyn-I); ft1=ft;
end
ft=ft2+1./diff(ft1,1,3);
ft=2*real(ft)-repmat(Fsc(:,1),[1,M]);
ft=repmat(exp(c*t)/NT,[size(Fsc,1),1]).*ft; ft(:,1)=2*ft(:,1);
feval(pl);

function pl1 % multiple plotting into a single figure
global ft t;
plot(t,ft); xlabel('t'); ylabel('f(t)'); grid on;

function pl2 % plotting into separate figures
global ft t;
for k=1:size(ft,1)

 figure;
 plot(t,ft(k,:)); xlabel('t'); ylabel('f(t)'); grid on;

end
%***%

33

%****************************** Fv1–SUBFUNCTION DEFINITION *****************************%
function f=Fv1(s)

f(1,:)=F1(s); % vector transform is evaluated component-wise
f(2,:)=F2(s);
f(3,:)=F3(s);

%***%

The vector transform evaluation can be performed not only component-wise as shown
above but also by putting together vectors resulted from some matrix operations when
complex frequency components are cycled in a loop structure, and finally also as a result of a
single function evaluation in the case its arguments were replaced with those prepared by
meshgrid function.

Thus to get e.g. the voltage waveforms at the near and far ends of the line together in a
single figure the main NILT function is called like this: niltv(‘V12’,12,’pl1’) and the
subfunction ‘V12’ can be of the form as follows

%****************************** V12–SUBFUNCTION DEFINITION *****************************%
function f=V12(s)

l=1;
Ro=0.5; Lo=4; Go=0.1; Co=1;
Vi=2*pi^2*(1-exp(-s))./s./(s.^2+4*pi^2);
Zi=0; Z2=10;
Z=Ro+s*Lo; Y=Go+s*Co;
Zv=sqrt(Z./Y); gam=sqrt(Z.*Y);
ro1=(Zi-Zv)./(Zi+Zv); ro2=(Z2-Zv)./(Z2+Zv);
K=Vi.*Zv./(Zi+Zv)./(1-ro1.*ro2.*exp(-2*gam*l));
x=0;
V1=K.*(exp(-gam*x)+ro2.*exp(-gam*(2*l-x)));
x=l;
V2=K.*(exp(-gam*x)+ro2.*exp(-gam*(2*l-x)));
f(1,:)=V1;
f(2,:)=V2;

%***%

Similarly the results can be obtained for the currents at both ends of the line, see Fig.4.

Finally the vector version of NILT function can easily be used to compute voltage or
current wave propagations along the line to display them three-dimensionally. For this
purpose another plot ‘pl3’ function and a called subfunction ‘Vx3’ can be created as follows

Fig.4 Voltages and currents at the near and far ends of the line

0 2 4 6 8 10 12
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

t

v1
,
v2

Voltages at the near and far ends of the line

v1

v2

0 2 4 6 8 10 12
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

t

i1
,
i2

Currents at the near and far ends of the line

i1

i2

34

%************************************* PLOT FUNCTION pl3 **************************************%
function pl3
 global ft t x; % x must also be global in Vx3

m=length(t); tgr=[1:m/64:m,m]; % only 65 time points is used for plotting
mesh(t(tgr),x,ft(:,tgr));
xlabel('t'); ylabel('x'); zlabel('f(t,x)');

%****************************** Vx3–SUBFUNCTION DEFINITION ******************************%
function f=Vx3(s)
 global x; % x must also be global in pl3

l=1; Ro=0.5; Lo=4; Co=1; Go=0.1;
x=linspace(0,l,65); % 65 coordinate points is used for plotting
[S,X]=meshgrid(s,x);
Zi=0; Z2=10;

 Vi=2*pi^2*(1-exp(-S))./S./(S.^2+4*pi^2);
Z=Ro+S*Lo; Y=Go+S*Co;
Zv=sqrt(Z./Y); gam=sqrt(Z.*Y);
ro1=(Zi-Zv)./(Zi+Zv); ro2=(Z2-Zv)./(Z2+Zv);
Vx=Vi.*Zv./(Zi+Zv).*(exp(-gam.*X)+ro2.*exp(-gam.*(2*l-X)))./(1-ro1.*ro2.*exp(-2*gam*l));
f=Vx;

%***%

Here a different approach of programming is shown when meshgrid function is applied to
get the result without using any loop structure although that could have also been used. The
main vector NILT function is called like this: niltv(‘Vx3’,12,’pl3’), when the CPU time was
about 2 seconds. Similarly 3D graph can be got for the current wave propagation, see Fig.5.

5. Generalized NILT function – matrix version

In the cases when e.g. multiconductor lines are simulated there is a need to invert
transforms of a matrix form like





















=×

������

������

������

��

������

������

������

�

����

�

�

��

�

���

�

�

� . (20)

Fig.5 Voltage and current wave propagations along the line

35

The approximate formula can now be expressed using three-dimensional arrays like

	�	������
�
�

�

������������ ��
 ××××

><

×××× −= ���� E� . (21)

Here FFT operation runs again along the second dimension as the transform matrix to be
inverted is situated along the first and the third dimensions, but this is not the only way to
arrange the solution. While in the vector version of the NILT procedure the ε–algorithm runs
into the third dimension here the fourth one will be used. This enable necessary operations to
be able to run in parallel over remaining dimensions and thus to save the CPU time in
maximum measure. Without any further mathematical description the main NILT Matlab
function and a called subfunction are presented below.

%*********************** NILTM-FUNCTION DEFINITION (matrix version) ********************%
function [ft,t,x]=niltm(F,tm,pl);
global ft t x;
alfa=0; M=256; P=2;
N=2*M; wyn=2*P+1;
t=linspace(0,tm,M);
NT=2*tm*N/(N-2); omega=2*pi/NT;
c=alfa+25/NT; s=c-i*omega*(0:N+wyn-2);
Fsc=feval(F,s);
ft=fft(Fsc(:,1:N,:),[],2); ft=ft(:,1:M,:);
dim1=size(Fsc,1); dim3=size(Fsc,3);
for n=N:N+wyn-2

ft(:,:,:,n-N+2)=reshape(kron(Fsc(:,n+1,:),exp(-i*n*omega*t)),dim1,M,dim3);
end
ft1=cumsum(ft,4); ft2=zeros(dim1,M,dim3,wyn-1);
for I=1:wyn-2

ft=ft2+1./diff(ft1,1,4);
ft2=ft1(:,:,:,2:wyn-I); ft1=ft;

end
ft=ft2+1./diff(ft1,1,4);
ft=2*real(ft)-repmat(real(Fsc(:,1,:)),[1,M,1]);
ft=repmat(exp(c*t)/NT,[dim1,1,dim3]).*ft; ft(:,1,:)=2*ft(:,1,:);
feval(pl);
%***%

%***************************** Fm1–SUBFUNCTION DEFINITION *****************************%
function f=Fm1(s)

f(1,:,1)=F11(s) % vector transform is evaluated component-wise
f(1,:,2)=F12(s)

. . .
f(2,:,1)=F21(s)
f(2,:,2)=F22(s)

. . .
%***%

Again more likely some other method of the evaluation of the called subfunction will often be
used, e.g. the method based on using meshgrid function or putting together matrices while the
complex frequency components are cycled in a loop structure. The main NILT function must
be joined with an appropriate plot function like e.g. ‘pl4’ function shown below.

For example, to be able to compute both three-dimensional graphs in Fig.5 in parallel the
called subfunction can have the form as the ‘VIx3’ function has. The main NILT function is
then called like this: niltm(‘VIx3’,12,’pl4’). For this example the CPU time was about 3
seconds.

36

%************************************* PLOT FUNCTION pl4 **************************************%
function pl4

global ft t x; % x must also be global in VIx3
m=length(t); tgr=[1:m/64:m,m]; % 65 coordinate points is used for plotting
for k=1:size(ft,3)

figure;
mesh(t(tgr),x,ft(:,tgr,k));
xlabel('t'); ylabel('x'); zlabel(strcat('f',num2str(k),'(t,x)'));

end

%***%

%****************************** VIx3–SUBFUNCTION DEFINITION *****************************%
function f=VIx3(s)

global x; % x must also be global in pl4
l=1; Ro=0.5; Lo=4; Co=1; Go=0.1;
x=linspace(0,l,65);
[S,X]=meshgrid(s,x);
Zi=0; Z2=10;
Vi=2*pi^2*(1-exp(-S))./S./(S.^2+4*pi^2);
Z=Ro+S*Lo; Y=Go+S*Co;
Zv=sqrt(Z./Y); gam=sqrt(Z.*Y);
ro1=(Zi-Zv)./(Zi+Zv); ro2=(Z2-Zv)./(Z2+Zv);
K=Vi./(Zi+Zv)./(1-ro1.*ro2.*exp(-2*gam*l));
Vx=K.*Zv.*(exp(-gam.*X)+ro2.*exp(-gam.*(2*l-X)));
Ix=K.*(exp(-gam.*X)-ro2.*exp(-gam.*(2*l-X)));
f(:,:,1)=Vx;
f(:,:,2)=Ix;

%***%

5.1. Application to multiconductor transmission line analysis

The last generalized matrix version of the NILT function can successfully be used for the
simulation of transient phenomena on multiconductor transmission lines (MTL) [4]. Here only
an example of its application for the case of an uniform MTL with zero initial conditions will
be presented although more general cases can be taken into account, see e.g. [5].

Consider a (3+1)-conductor transmission line system according to Fig.6 [6].

The line has the length �� ����= , the per-unit-length matrices are of the forms as shown
below [6]

Ri1=50Ω

vi1(t)

10.8kΩ

1.4kΩ

450Ω

10.8kΩ

450Ω 450Ω

Fig.6 The (3+1)-conductor transmission line system

x0 l

v(t,x) i(t,x)

37

�

 µ
















=

��
��������

�������
����

����������

�� ,
�

Ω
















=

����
��

�����
�

������

�� ,

 (22)

�

!�

















−−
−−
−−

=

�

�

�

�� ,
�

�"
















=

�����

�����

�����

�� .

The first wire is driven with the unit step voltage with the leading edge 0.1ns. As remaining
wires at the left end of the line are open a multiport model based on generalized Norton
equivalents can be used to incorporate boundary conditions.

Generally for (n+1)-conductor transmission line if zero initial conditions are considered the
Laplace transforms of
×
 voltage and current vectors ��� ��	 and ��� ��
 at a distance x
from the left end of the line can be expressed in a compact matrix form as [4]









⋅








=








��

��

������

������

���

���

�

�

�

�

����

����

��

��

	

	

ΦΦ
ΦΦ

, (23)

where ����� ��Φ ,
�
��� = , are

× square submatrices of a transition matrix ��� ��Φ
computed through a matrix exponential function like







⋅








= �

�

�
��

���

��

��

��
������Φ , (24)

where 0 means

× zero matrix, and

���� ��
 �� += (25) , ���� ��� �� += (26)

are

× series impedance and shunting admittance matrices, respectively. Using generalized
Norton equivalents the formulae for vectors ������� �� 		 = and ������� ��

 = at the left end
of the line can be written like [4]

�	������������

�	������������������

����

��

����

��

�

�����

��������

�

���	

+−⋅
−+−= −

ΦΦ
ΦΦΦΦ

, (27)

�������� ������ ���� 	�

 −= , (28)

where ���� �
 and ���� �
 are
×
 internal current vectors, and ���� �� and ���� �� are internal

 × admittance matrices of Norton equivalents at the left and right ends of the line,

respectively. Finally the ���� �Φ ,
�
��� = , are

× square submatrices of the whole

transition matrix ����� ��� ΦΦ = .

In practical computations it is more convenient to use a recurrent formula instead of eq. 24 to
compute necessary transition matrices. For a uniform transmission line this can be of the form

���������
−⋅∆= �� ������ ΦΦΦ , (29)

for �� �
�
 �= , with �� =� and ��� = , where m is the number of line elements of equal

lengths
−−=∆ �� ��� . Then �=��� ���Φ is the

 × identity matrix and the matrix

exponential function according to eq. 24 is used to compute the matrix ��� �� ∆Φ only once.

Denoting []
������ ���������
	� = the eq. 23 can then be rewritten into a recurrent form

���������
−⋅∆= �� ������ �� Φ , (30)

38

when []
���� ������� ���
	� = . Thus the �� coordinates can straight be chosen as these

intended for plotting.

In the example above �=
 and the Norton parameters have the forms as follows















 −−⋅⋅
=

−

�

�

��
�����
�
�

��

��

��

��

�
 ,
















=

�

�

�

���� �
 ,
















=

���

���

���
��

���� ��

 (30)

















++−−
−+−
−−++

=
���

���

����

����

���

����
���

����

����

���

����
���

���

����

���� ��

A subfunction that will be called by the main matrix version of the NILT function can be of
the form as follows

%***************************** Mult3–SUBFUNCTION DEFINITION *****************************%
function f=Mult3(s)

global x; % x must also be global in pl4
 l=0.70;

Lo=[2.4,0.69,0.64;0.69,2.36,0.69;0.64,0.69,2.4]*1e-6;
Ro=[41.67,0,0;0,41.67,0;0,0,41.67];

 Co=[21,-12,-4;-12,26,-12;-4,-12,21]*1e-12;
 Go=[0.6,0,0;0,0.6,0;0,0,0.6]*1e-3;
 YiL=[0.02,0,0;0,0,0;0,0,0];

YiR=[1/10800+1/1400+1/450,-1/10800,-1/1400;-1/10800,2/10800+1/450,-1/10800; ...
 -1/1400,-1/10800,1/10800+1/1400+1/450];

 n=3; n1=1:n; n2=n+1:2*n;
 x=linspace(0,l,65); dx=x(2); % 65 coordinate points is used for plotting
 f=zeros(65,length(s),2*n); % predefining 3D array to speed up calculation
 for j=1:length(s)
 Z=Ro+s(j)*Lo; Y=Go+s(j)*Co;
 IiL=[2e8*(1-exp(-1e-10*s(j)))/s(j)^2;0;0]; IiR=[0;0;0];
 MZY=[zeros(n),-Z;-Y,zeros(n)];
 Fi=expm(MZY*l);
 K=Fi(n2,n2)-YiR*Fi(n1,n2);
 VL=(K*YiL+YiR*Fi(n1,n1)-Fi(n2,n1))\(K*IiL+IiR); IL=IiL-YiL*VL;
 f(1,j,:)=[VL;IL];
 Fidx=expm(MZY*dx);
 for k=2:length(x)
 f(k,j,:)=Fidx*squeeze(f(k-1,j,:));
 end
 end

%***%

In this case the transform evaluation is performed in a loop structure where respective
complex frequencies are cycled and the resultant three-dimensional array is assembled from
vectors computed using above presented matrix equations. The main NILT function is then
called like this: niltm(‘Mult3’,2e-8,’pl4’), and the results are in Fig.7. The CPU time was about
30 seconds.

It should be noticed a function like above was integrated into programs for time-domain
simulations of multiconductor transmission lines enabling to solve not only such a simple
case but also e.g. nonuniform MTL under nonzero initial conditions, see e.g. [5].

39

References

[1]�������k, L.: The Fast Computing Method of Numerical Inversion of Laplace Transforms Using FFT
Algorithm. In: Proc. of 5th EDS ´98 Int. Conf., Brno, Czech Republic, June 1998, pp. 97-100.

[2]��������	 L.: An Improvement of FFT-based Numerical ILT Procedure by Application of ε-algorithm. In:

�������
���
 !"#	�����	�$����%&&&	����'�%&("%&&'

[3] Macdonald, J. R.: Accelerated convergence, divergence, iteration, extrapolation, and curve fitting. J. Appl.
Phys., 10, 1964, pp. 3034-3041.

[4] Paul, C. R.: Analysis of Multiconductor Transmission Lines. John Wiley & Sons, New York, 1994.
[5]�������k, L.: Time-Domain Simulation of Nonuniform Multiconductor Transmission Lines under Nonzero

Initial Conditions Using Matlab Language. Proc. of European Conference on Circuit Theory and Design
ECCTD’99, Vol. 2, Stresa, Italy, August-September 1999, pp.1135-1138.

[6] Chang, E.C., Kang, S.M: Transient Simulation of Lossy Coupled Transmission Lines Using Iterative Linear
Least Square Fitting and Piecewise Recursive Convolution. IEEE Transactions on Circuits and Systems – I:
Fundamental Theory and Applications, Vol. 43, No. 11, November 1996, pp. 923-932.

��������
��
�����������������
�������������� !"#$" �% �
�������� !"#$" &$!�

∗��)�*'�+��������������	�,
�'	�-����.����%%/	�(%0�11	�����	�,$����2�
�����

Fig.7 Voltage and current wave propagations along the MTL

