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Abstract: The paper presents the fundamental mathematical methods used in the
analysis and processing of three-dimensional (3D) image objects. The methods to
be discussed include 3D discrete Fourier transform (DFT) and Wavelet transform
(WT). Firstly there is a need to generate an object for testing followed by its 3D
visualization and the generation of the random noise. Computer visualization and
processing is applied to the 3D biomedical image data.
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1. INTRODUCTION

Several of today’s imaging techniques (Bilgin and
Marcellin 2000) produce three-dimensional (3D)
data sets. Medical imaging techniques, such as
computer tomography (CT) and magnetic reso-
nance (MR), generate multiple slices in a single
examination, with each slice representing a differ-
ent cross section of the body part being imaged.
However when transmitting these image volumes
there is a possibility that noise is encountered dur-
ing image transmission as pixel drop-outs. Noise
elimination forms a fundamental problem in im-
age processing.

The three-dimensional discrete Fourier transform
is applied for noise rejection by the use of an
appropriate window function in the frequency do-
main. Wavelet transform allows the image volume
decomposition and reconstruction using selected
threshold levels. The paper compares efficiency of
the proposed methods. A series of de-noising and
enhancement experiments is performed to verify
the efficiency of the methods using 3D image
volumes corrupted with random noise. The ex-

perimental results of the algorithms described are
compared based on the quality of the de-noised
image volumes. The algorithms are at first tested
for the generated image objects and then applied
to real magnetic resonance image (MRI) volumes
for the biomedical 3D image applications.

The paper is organized as follows: Sections 4 and
5 present a brief overview of Fourier and wavelet
transform techniques and their applications to
multidimensional data. In Section 6 simulated
and MR volumes are used to test de-noising per-
formance of the proposed algorithms. The per-
formance of the algorithms are investigated and
compared using the mean square error (MSE)
and signal-noise-ratio (SNR) criteria. Section 7
summarizes the paper and provides some of the
possible solutions to improve the de-noising.

2. BIOMEDICAL IMAGE VISUALIZATION

Magnetic resonance imaging (MRI) is based on
the absorption and emission of energy in the radio
frequency range of the electromagnetic spectrum.



MRI produces an image of the nuclear magnetic
resonance (NMR) signal in a thin slice through
the human body for investigation of brain, liver,
kidneys and other soft tissue organs. To form a
3D volume a continuous set of 2D data slices are
stacked one on top of the other. Fig. 1 shows
the original 20 frames of the MR brain image.
A rendered 3D view of the stack of images is
shown in Fig. 2. The three-dimensional array
values are represented as f [m,n, k] where m =
1, . . . ,M represents the x-pixel co-ordinates, n =
1, . . . , N represents the y-pixel co-ordinates and
k = 1, . . . ,K are the corresponding slices.

Fig. 1. Sequence of MR image slices

Fig. 2. The 3D model visualization

3. NOISE

When an image signal is received after transmis-
sion over some distance, it is oftenly corrupted
with noise. The simplest model for the acquisition
of noise by a signal is additive noise, which has the
form

f̃(x) = f̄(x) + ñ(x)

where f̃(x)...corrupted signal, f̄(x)...original sig-
nal and ñ(x) ...additive noise

Noise may be completely random and often noise
is additive, simply causing the resulting sig-
nal/image to be sample by sample higher or lower
than it should be. Random noise can also occur
in short sections of the signal. This is called local-
ized random noise and can be caused by abrupt
disruptions in the transmission of the signal. In

recent years, wavelets have been used to effectively
minimize such type of noise.

4. DISCRETE FOURIER TRANSFORM

Discrete Fourier transform represent an efficient
tool for image decomposition, analysis and its
reconstruction.

4.1 Two-dimensional Discrete Fourier Transform

Two-dimensional discrete Fourier transform is
used for the processing of image slices. Basis func-
tions are sinusoids with frequency u in one direc-
tion times sinusoids with frequency v in the other.
For an M×N image f [m,n], these basis functions
can be replaced for computational purposes by
complex exponentials ei2πum/M and ei2πvn/N to
evaluate the discrete Fourier transform

F [u, v] =
M−1∑
m=0

N−1∑
n=0

f [m,n]e−i2π(um/M+vn/N) (1)

and inverse transform

f [m,n] =
1

MN

M−1∑
u=0

N−1∑
v=0

F [u, v]ei2π(um+vn) (2)

The point F [u, v] in the frequency domain corre-
sponds to the basis function with frequency u and
frequency v.

The 2D Fourier transform is linearly separable i.e.
the Fourier transform of a two-dimensional image
is the Fourier transform of the rows followed by
the Fourier transform of the resulting columns (or
vice versa) as shown below.

F [u, v] =
M−1∑
m=0

N−1∑
n=0

f [m,n]e−i2π(um/M+vn/N)

=
M−1∑
m=0

N−1∑
n=0

f [m,n] e−i2πum/Me−i2πvn/N

=
M−1∑
m=0

[
N−1∑
n=0

f [m,n]e−i2πum/M

]
e−i2πvn/N

The fast Fourier transform (FFT) is an efficient
algorithm to calculate the DFT. N and M are
commonly powers of 2 (for the FFT).

4.2 Three-dimensional Discrete Fourier Transform

Three-dimensional discrete Fourier transform of
three-dimensional data values f [m,n, k], where



m = 0, 1 . . .M − 1, n = 0, 1 . . . N − 1 and k =
0, 1 . . .K − 1 is here defined by the relation

F [u, v, w]=
M−1∑
m=0

N−1∑
n=0

K−1∑
k=0

f [m,n, k]e−i2π( um
M + vn

N + wk
K )

(3)

The inverse Fourier transform is

f [m,n, k]=C
M−1∑
u=0

N−1∑
v=0

K−1∑
w=0

F [u, v, w]ei2π( um
M + vn

N + wk
K )

(4)

for u = 0, 1 . . .M − 1, v = 0, 1 . . . N − 1, w =
0, 1 . . .K − 1 and C = 1

MNK

5. DISCRETE WAVELET TRANSFORM

Discrete Wavelet transform (DWT) (Newland
1994) decomposes a signal into a two-dimensional
function of time and scale. Wavelet analysis is a
modification of Fourier analysis, where functions
other than sine and cosine are used as the basis
functions which enable localization in space and
frequency. Wavelet functions used for signal anal-
ysis are derived from the initial function forming
basis for the set of basis functions.

Two types of basis functions normally used are

• Scaling function Φmk(t)

Φmk(t) = 2−
m
2 Φ0(2−mt− k) (5)

• Wavelet Ψmk(t)

Ψmk(t) = 2−
m
2 Ψ0(2−mt− k) (6)

where m stands for dilation or compression and k
is the translation index. Every basis function Ψ is
orthogonal to every basis function Φ.

In this paper we are going to use the Haar wavelet
which is the simplest of all the wavelets. One nice
feature of the Haar wavelet transform is that the
transform is equal to its inverse. The Haar mother
wavelet (Fig. 3) is defined as follows:

Φ0(t) =

{
1 0 ≤ t ≤ 1
0 otherwise

Ψ0(x) =


1 0 ≤ t ≤ 1

2
−1

1
2
≤ t ≤ 1

0 otherwise

The wavelet transform (Khalil and Shaheen 1999)
is implemented using a pair of filters: a low-pass
filter L and a high-pass filter H, which split a
signal’s bandwidth in two halves.
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Fig. 3. Scaling function and Haar wavelet
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Fig. 4. Signal decomposition

The 1D forward wavelet transform of a discrete-
time signal x[n] (0 ≤ n < N) is performed by
convolving that signal with both a half-band low-
pass filter L and high-pass filter H and down-
sampling by two.

c[n] =
P−1∑
k=0

s[k] x[n−k] d[n] =
P−1∑
k=0

w[k] x[n−k]

(7)

where c[n] represent the approximation coeffi-
cients for n = 0, 1, 2 . . . , P − 1 (P = N

2 ), d[n] are
the detail coefficients, s and w respectively, are
coefficients of the discrete-time filters L and H

{s[k]}P−1
n=0 = (s[0], s[1], . . . , s[P − 1])

{w[k]}P−1
n=0 = (w[0], w[1], . . . , w[P − 1])

5.1 Three-dimensional Wavelet Transform

Discrete Wavelet Transform (DWT) (Pinnama-
neni and Meyer 2001) is a separable, sub-band
transform. Although nonseparable wavelets can
also be used for multidimensional signals, such fil-
ters are much harder to design than are separable
filters. As a result, their use has been limited in
image processing applications. 3D wavelets can be
constructed as separable products of 1D wavelets
by successively applying a 1D analyzing wavelet
in three spatial directions (x,y,z).

Fig. 5 shows a separable 3D decomposition of a
volume. The volume F (x, y, z) (Khalil and Sha-
heen 1999) is firstly filtered along the x dimen-
sion, resulting in a low-pass image L(x, y, z) and
a high-pass image H(x, y, z). Since the size of L
and H along the x dimension is now half that of



F (x, y, z), down-sampling of the filtered volume
in the x dimension by two can be done without
loss of information. The down-sampling is done by
dropping each odd filtered value. Both L and H
are then filtered along the y dimension, resulting
in four decomposed sub-volumes: LL, LH, HL
and HH. Once again, we can down-sample the
sub-volumes by two, this time along the z dimen-
sion. Then each of these four sub-volumes are then
filtered along the z dimension, resulting in eight
sub-volumes: LLL, LLH, LHL, LHH, HLL, HLH,
HHL and HHH (see Fig 5 ).
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Fig. 5. Three-dimensional WT decomposition

5.2 Wavelet thresholding - de-noising

After decomposition it is possible to modify re-
sulting coefficients before the reconstruction to
eliminate undesirable signal components. To im-
plement wavelet thresholding the so called wavelet
shrinkage algorithm is applied which consists of
the following steps:

• Perform the forward wavelet transform
• Estimate a threshold
• Choose shrinkage rule and apply the thresh-

old according to this rule
• Perform the inverse transform using the

thresholded coefficients

In our experiments we used the universal thresh-
old, soft shrinkage rule and scaled MAD (median
absolute deviation) noise estimator.

The universal threshold is given by:

λ = σ
√

2 log(N)

where N is the size of the coefficient arrays.

Level dependent threshold

λk = σk

√
2 log(N)

where the scaled MAD noise estimator is comput-
ed by:

σk =
MADk

0.6745
=

(median(|ωi|))k

0.6745

ωi are the coefficients for a given sub-band k

The threshold estimation method is repeated for
each sub-band separately, because the sub-bands
exhibit significantly different characteristics.

Estimation of the noise variance σk is done by
using the robust median estimator in the highest
sub-band of the wavelet transform

The shrinkage rule define how we apply the
threshold. There are two main approaches.

Hard thresholding (Fig 6b) deletes all coefficients
that are smaller than the threshold λ and keeps
the others unchanged. The hard thresholding is
defined as follows:

cs(k)=
{

sign c(k) (|c(k) |) if |c(k) |> λ
0 if |c(k) |≤ λ

(8)

where λ is the threshold and the coefficients that
are above the threshold are the only ones to be
considered.

Soft thresholding (Fig 6c) deletes the coefficients
under the threshold, but scales the ones that are
left. The general soft shrinkage rule is defined by:

cs(k)=
{

sign c(k) (|c(k) | −λ) if |c(k) |> λ
0 if |c(k) |≤ λ

(9)

For an illustration of what has been described
above a linear signal is thresholded according to
the methods described using a thresold of 0.5
(Fig. 6).
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Fig. 6. An example of soft-thresholding and hard-
thresholding to an original signal using a
threshold λ = 0.5



5.3 Reconstruction

After modifying the coefficients we can apply the
inverse transform by convolving with the respec-
tive low-pass and high-pass synthesis filters as
described in various books ((Strang and Nguyen
1996), (Vetterli 1992)). The resulting structure is
presented in Fig. 7.
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Fig. 7. Three-dimensional WT reconstruction

6. RESULTS

The algorithms were applied to simulated volume
and MRI sub-volume. Both volumes are corrupted
with randomly distributed noise generated using
the MATLAB rand function.

These methods are compared using the mean
square error (MSE), signal-noise-ratio (SNR) and
visual criteria. Assuming that the original uncor-
rupted volume is known our goal is to remove the
noise, or ’de-noise’ and to obtain an estimate of
f̃ [m,n, k] of f [m,n, k] which gives a reasonable
small value of the mean square error (MSE). The
MSE is computed relative to the original image
volume i.e. it measures the difference between the
values of the corresponding pixels from the two
volumes.

MSE is calculated using the following equation:

MSE = C
M−1∑
m=0

N−1∑
n=0

K−1∑
k=0

(
f [m,n, k]− f̃ [m,n, k]

)2

(10)

where C = 1
MNK , f [m,n, k] and f̃ [m,n, k] repre-

sent the original volume and the filtered or ’de-
noised’ volume respectively.

6.1 Results from simulated realistic data

The simulated volume consists of a number of
64× 64× 8 three-dimensional data.

The 3D Haar wavelet transform has been used to
de-noise the noisy volume. Fig. 9 shows a plot of

Fig. 8. Application of Fourier transform to a noisy
simulated image volume

the coefficients of a one level of the Haar trans-
form. The horizontal lines shown in the graph are
the soft thresholding levels of 0.5. The effect of this
thresholding will set all the values in the filtered
signal that have an absolute value less than 0.5
to zero. Applying the given threshold level and
taking the inverse of the result a de-noised volume
is obtained as shown in Fig 9c.
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Fig. 9. The 3D decomposition and reconstruction

Table 1. qualitative analysis - sim-
ulated model

Type of method MSE

Noisy image 0.01488

DFT 0.000005

Global thresholding 0.003480

Level-dependent 0.003487

6.2 Results from real MRI data

Fig. 10 shows the de-noised MR sub-volume after
the application of Fourier transform.

Fig. 10. The 3D visualization for the reconstructed
MRI volume



We applied 3-D Haar wavelet transform algorithm
to an MRI scan of a human brain (128 x 128 x
16). The figure which follows (Fig. 11) shows a
one level decomposition of the 3D volume.
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Fig. 11. The 3D decomposition and reconstruction
of MR image volume

The MSE (mean squared error) information ob-
tained from the proposed algorithms is included
in Table 2. The visual quality of the results can
be seen from Fig. 11.

Table 2. qualitative analysis - mri
volume

Type of method MSE SNR[dB]

Noisy image 0.014580 13.7537

DFT 0.000070 26.8482

Global thresholding 0.002618 19.3300

Level-dependent 0.002620 18.6147

7. CONCLUSIONS

In this paper we presented the generalization of
the DWT to 3D case. The resulting algorithm
has been used for the processing of noisy MR
image volumes. Fourier transform has been just
used as a method of verification as we have used
an ideal filter window function which completely
eliminated the noise. Future work will involve the
use other types of wavelets like the Daubechies
which possible might give better results than the
ordinary and simple Haar wavelet.
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