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Institute of Chemical Technology, Department of Computing and Control Engineering
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Abstract: Wavelet techniques can be successfully applied in various signal and image pro-
cessing methods, namely in image denoising, segmentation, classification and motion esti-
mation. The paper discusses the application of complex discrete wavelet transform (CDWT)
which has significant advantages over real wavelet transform for certain signal processing
problems. CDWT is a form of discrete wavelet transform, which generates complex co-
efficients by using a dual tree of wavelet filters to obtain their real and imaginary parts.
What makes the complex wavelet basis exceptionally useful for denoising purposes is that
it provides a high degree of shift-invariance and better directionality compared to the real
DWT. The main part of the paper is devoted to the theoretical analysis of complex wavelet
transform and its verification for simulated images. Resulting algorithms are then applied
to the analysis and denoising of magnetic resonance biomedical images.
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1 INTRODUCTION

Complex wavelets have not been used widely in image processing due to the difficulty in designing
complex filters which satisfy a perfect reconstruction property. To overcome this Kingsbury [2]
proposed a dual-tree implementation of the CWT (DT CWT) which uses two trees of real filters
to generate the real and imaginary parts of the wavelet coefficients separately. The two trees
are shown in Fig. 3 for 1D signals. Even though the outputs of each tree are downsampled by
summing the outputs of the two trees during reconstruction we are able to suppress the aliased
components of the signal and achieve approximate shift invariance. In this paper CDWT which
is an alternative to the basic DWT will be discussed, the DWT suffers from the following two
problems:

• Lack of shift invariance - this results from the downsampling operation at each level. When
the input signal is shifted slightly, the amplitude of the wavelet coefficients varies so much.

• Lack of directional selectivity - as the DWT filters are real and separable the DWT cannot
distinguish between the opposing diagonal directions.

These problems hinder the use of wavelets in other areas of image processing. The first problem
can be avoided if the filter outputs from each level are not downsampled but this increases the
computational costs significantly and the resulting undecimated wavelet transform still cannot
distinguish between opposing diagonals since the transform is still separable. To distinguish
opposing diagonals with separable filters the filter frequency responses are required to be asym-
metric for positive and negative frequencies. A good way to achieve this is to use complex
wavelet filters which can be made to suppress negative frequency components. As we shall see
the CDWT has improved shift-invariance and directional selectivity than the separable DWT.

R062 - 1



2 PRINCIPLE OF CDWT AND THE DUAL TREE IMPLEMENTATION

The dual-tree CWT comprises of two parallel wavelet filter bank trees that contain carefully
designed filters of different delays that minimize the aliasing effects due to downsampling [3].
The dual-tree CDWT of a signal x(n) is implemented using two critically-sampled DWTs in
parallel on the same data, as shown in Fig. 3. The transform is two times expansive because
for an N -point signal it gives 2N DWT coefficients. If the filters in the upper and lower DWTs
are the same, then no advantage is gained. So the filters are designed in a specific way such
that the subband signals of the upper DWT can be interpreted as the real part of a complex
wavelet transform and subband signals of the lower DWT can be interpreted as the imaginary
part. When designed in this way the DT CDWT is nearly shift invariant, in contrast to the
classic DWT.

2.1 Translation Invariance by Parallel Filter Banks

The orthogonal [6] two-channel filter banks with analysis low-pass filter given by the z-transform
H0(z), analysis highpass filter H1(z) and with synthesis filters G0(z) and G1(z) is shown by the
diagram below (Fig. 1) .
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Figure 1 - DWT filter bank

For an input signal X(z), the analysis part of the filter bank followed by upsampling
produces the low-pass (eq. (1)) and the high-pass (eq. (2)) coefficients

C1(z2) =
1
2
{X(z)H0(z) + X(−z)H0(−z)} (1)

D1(z2) =
1
2
{X(z)H1(z) + X(−z)H1(−z)} (2)

respectively, and decomposes the input signal into a low frequency part X1
l (z) and a high

frequency part X1
h(z), the output signal is the sum of these two components (eq. (3))

Y (z) = X1
l (z) + X1

h(z) (3)

where

X1
l (z) = C1(z2)G0(z) =

1
2
{X(z)H0(z)G0(z) + X(−z)H0(−z)G0(z)} (4)

X1
h(z) = D1(z2)G1(z) =

1
2
{X(z)H1(z)G1(z) + X(−z)H1(−z)G1(z)} (5)

This decomposition is not shift invariant due to the terms in X(−z) of (eq. (4)) and (eq. (5)),
respectively, which are introduced by the downsampling operators. If the input signal is shifted,
for example z−1X(z), the application of the filter bank results in the decomposition (eq. (6))

z−1X(z) = X̃1
l (z) + X̃1

h(z) (6)
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For an input signal z−1X(z) we have

C1(z2) =
1
2
{z−1X(z)H0(z) + (−z−1)X(−z)H0(−z)} (7)

and

X̃1
l (z) =

1
2
z−1{X(z)H0(z)G0(z) − X(−z)H0(−z)G0(z)} (8)

and similarly for the high-pass part, which of course is not the same as z−1X1
l (z) if we substitute

for z−1 in eq. (4). From this calculation it can be seen that the shift dependence is caused by
the terms containing X(−z), the aliasing terms.

One possibility to obtain a shift invariant decomposition can be achieved by the addition
of a filter bank to Fig. 1 with shifted analysis filters z−1H0(z), z−1H1(z) and synthesis filters
zG0(z), zG1(z) and subsequently taking the average of the lowpass and the highpass branches
of both filter banks (Fig. 2).
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Figure 2 - One level complex dual tree

If we denote the first filter bank by index a and the second one by index b then this
procedure implies the following decomposition (eq. (9))

X(z) = X1
l (z) + X1

h(z) (9)

where for the lowpass channels of tree a and tree b we have

X1
l (z) =

1
2
{C1

a(z2)G0a(z) + C1
b (z2)G0b(z)}

=
1
4
{[X(z)H0(z) + X(−z)H0(−z)]G0(z)+

+ [X(z)z−1H0(z) + X(−z)(−z−1)H0(−z)]zG0(z)}
=

1
4
{X(z)[H0(z)G0(z) + H0(z)G0(z)]+

+ X(−z)[H0(−z)G0(z) − H0(−z)G0(z)]}
=

1
2
X(z)H0(z)G0(z)

(10)

and similarly for the high-pass part. The aliasing term containing X(−z) in X1
l has vanished

and the decomposition becomes indeed shift invariant.
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Using the same principle for the design of shift invariant filter decomposition, Kingsbury
suggested in [2] to apply a ’dual-tree’ of two parallel filter banks and combine their bandpass
outputs. The structure of a resulting analysis filter bank is sketched in Fig. 3, where index
a stands for the original filter bank and the index b is for the additional one. The dual-tree
complex DWT of a signal x(n) is implemented using two critically-sampled DWTs in parallel
on the same data.
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Figure 3 - Complex dual tree

In one dimension, the so-called dual-tree complex wavelet transform provides a repre-
sentation of a signal x(n) in terms of complex wavelets, composed of real and imaginary parts
which are in turn wavelets themselves. In fact, these real and imaginary parts essentially form
a quadrature pair [8], the complex wavelet associated with the dual tree CDWT is shown below
(Fig. 4).
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Figure 4 - Impulse response of a complex wavelet
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The dual-tree CDWT uses length-10 filters [4], the table of coefficients of the analysing
filters in the first stage (Tab. 1) and the remaining levels (Tab. 2) are shown. The reconstruction
filters are obtained by simply reversing the alternate coefficients of the analysis filters.

Table 1 - First level DWT coefficients
Tree a Tree b

H0a H1a H0b H1b

0 0 0.01122679 0
-0.08838834 -0.01122679 0.01122679 0
0.08838834 0.01122679 -0.08838834 -0.08838834
0.69587998 0.08838834 0.08838834 -0.08838834
0.69587998 0.08838834 0.69587998 0.69587998
0.08838834 -0.69587998 0.69587998 -0.69587998
-0.08838834 0.69587998 0.08838834 0.08838834
0.01122679 -0.08838834 -0.08838834 0.08838834
0.01122679 -0.08838834 0 0.01122679

0 0 0 -0.01122679

Table 2 - Remaining levels DWT coefficients

Tree a Tree b
H00a H01a H00b H01b

0.03516384 0 0 -0.03516384
0 0 0 0

-0.08832942 -0.11430184 -0.11430184 0.08832942
0.23389032 0 0 0.23389032
0.76027237 0.58751830 0.58751830 -0.76027237
0.58751830 -0.76027237 0.76027237 0.58751830

0 0.23389032 0.23389032 0
-0.11430184 0.08832942 -0.08832942 -0.11430184

0 0 0 0
0 -0.03516384 0.03516384 0

To extend the transform to higher-dimensional signals, a filter bank is usually applied
separably in all dimensions. To compute the 2D CWT of images these two trees are applied
to the rows and then the columns of the image as in the basic DWT. This operation results
in six complex high-pass subbands at each level and two complex low-pass subbands on which
subsequent stages iterate in contrast to three real high-pass and one real low-pass subband for
the real 2D transform. This shows that the complex transform has a coefficient redundancy of
4:1 or 2m : 1 in m dimensions. In case of real 2D filter banks the three highpass filters have
orientations of 00, 450 and 900, for the complex filters the six subband filters are oriented at
±150,±450,±750 (Fig. 5).

750
450

150 −750
−450 −150

Figure 5 - Complex filter response showing the orientations of the complex wavelets

The CDWT decomposes an image into a pyramid of complex subimages, with each
level containing six oriented subimages resulting from evenly spaced directional filtering and
subsampling, such directional filters are not obtainable by a separable DWT using a real filter
pair but complex coefficients makes this selectivity possible.
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3 RESULTS

The shift invariance and directionality of the CWT may be applied in many areas of image
processing like denoising, feature extraction, object segmentation and image classification. Here
we shall consider the denoising example. For denoising a soft thresholding method is used. The
choice of threshold limits λ for each decomposition level and modification of the coefficients is
defined by eq. (11).

cs(k)=
{

sign c(k)(|c(k) | −λ) if |c(k) |> λ
0 if |c(k) |≤ λ

(11)

To compare the efficiency of the DWT with the basic DWT the quantitative mean square error
(MSE) is used. In all cases the optimal thresholds points λ were selected to give the minimum
square error from the original image (Fig. 7).

 (a)  (b)

 (c)  (d)

Figure 6 - MRI image scan: (a) with random noise added, (b) denoised with DWT, (c) denoised
with real CWT, (d) denoised with dual tree CWT

From Fig. 6(b) it may be seen that DWT introduces prominent worse artifacts, while
the DT CWT provides a qualitatively restoration with a better optimal minimum MSE error.
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Figure 7 - Optimal threshold points for the three different methods
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4 CONCLUSION

The DT CWT is shift invariant and forms directionally selective diagonal filters. These prop-
erties are important for many applications in image processing including denoising, deblurring,
segmentation and classification. In this paper we have illustrated the example of the application
of complex wavelets for the denoising of MR images, showing a great effectiveness in removing
the noise compared to the classical DWT as Tab. 3 shows.

Table 3 - Mean Square Error (MSE) and Signal-to-Noise Ratio (SNR) Values

Type of method MSE SNR [dB]
noisy image 0.0418 20.8347

DWT 0.0262 25.4986
real CWT 0.0255 25.7601

CWT 0.0240 26.3751
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