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Abstract

The main goal of the thesis is to show the de-noising algorithms based upon the discrete

wavelet transform (DWT) that can be applied successfully to enhance noisy multidimen-

sional magnetic resonance (MR) data sets i.e two-dimensional (2-D) image slices and

three-dimensional (3-D) image volumes. Noise removal or de-noising is an important task

in image processing used to recover a signal that has been corrupted by noise. Random

noise that is present in MR images is generated by electronic components in the instrumen-

tation. The thesis present both 2-D image decomposition, thresholding and reconstruction

and the 3-D de-noising of MR image volumes using the DWT as a new approach which

can be used in the processing of biomedical images. A novel use of the complex wavelet

transform for the study and application in the de-noising of MR images is presented in the

main part of the thesis. Segmentation of image textures using a watershed transform and

a wavelet based feature extraction for classification of image textures by a competitive

neural network will be shown.

Further topic of interest to be presented in the thesis is the visualization of 2-D MR

slices and 3-D image volumes using some MATLAB functions. This makes it possible

to visualize images without the need of special glasses especially for 3-D image volumes

or using special expensive software programs which will need some bit of expertise. The

application of the proposed algorithms is mainly in the area of magnetic resonance imaging

(MRI) as an imaging technique used primarily in medical field to produce high quality

images of the soft tissues of the human body. An insight to the visualization of MRI data

sets i.e. 2-D image slices or 3-D image volumes is of paramount importance to the medical

doctors.

The thesis presents the theory of the fundamental mathematical tools (discrete Fourier

transform (DFT) and DWT) that are used for the analysis and processing of biomedical

images. DWT plays an increasingly important role in the de-noising of MR images. 3-D

digital image processing, and in particular 3-D DWT, is a rapidly developing research area

with applications in many scientific fields such as biomedicine, seismology, remote sensing,

material science, etc. The 3-D DWT algorithms are implemented as an extension of the

existing 2-D algorithms. The performance of the de-noising algorithms are quantitatively

assessed using different criteria namely the mean square error (MSE), peak signal-to-noise

ratio (PSNR) and the visual appearance. The results are discussed in accordance to the

type of noise and wavelets implemented. The properties of wavelets make them special



in that they have a good time and frequency localization which make them ideal for the

processing of non-stationary signals like the biomedical signals (EEG, ECG,..) and images

(MR). The traditional Fourier transform only provides the spectral information of a signal

and thus it is not suitable for the analysis of non-stationary signals.

A novel complex wavelet transform (CWT) which was introduced by Dr. Nick Kings-

bury of Cambridge University is analyzed and implemented in the main part of the thesis.

The description of the dual tree implementation of CWT is followed by its analysis and

discussions devoted to its advantages over the classical wavelet transform. This enhanced

transform is then applied to MRI data analysis. Experimental results show that complex

wavelet de-noising algorithm can powerfully enhance the PSNR in noisy MRI data sets.

The further part of the thesis devoted to the description of basic principles of a wa-

tershed transform for segmentation of MR images. After its verification for simulated

textures it is used for segmentation of a human knee MR image. The anatomical regions

of the knee which includes the muscle, bone and tissue can be easily distinguished by this

algorithm. Segmentation is an important field in medical applications and can be used for

disease diagnosis e.g. detecting brain tumor cells.

Texture analysis of artificial textures based on image wavelet decomposition is consid-

ered as a pre-processing method for the classification of the textures. The wavelet features

are obtained by using the mean or the standard deviations of the wavelet coefficients. For

the classification of the textures these feature vectors form the inputs to a competitive

neural network. The work also presents own algorithms for class boundaries evaluation.

Texture analysis is used in a variety of applications, including remote sensing, satellite

imaging, medical image processing, etc.

Finally, I conclude and give suggestions for future research work. The thesis also gives

a review of the de-noising and visualization of biomedical images on the web using the

Matlab Web Server (MWS).

Keywords

Time-Frequency and Time-Scale Signal Analysis, Discrete Wavelet Transform, Complex

Wavelet Transform, Image De-noising, Biomedical Image Processing, Watershed Algo-

rithm, Segmentation, Feature Extraction, Image Visualization
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Abstrakt

Ćılem disertačńı práce je návrh a analýza algoritmů založených na aplikaci diskrétńı

wavelet transformace (DWT) pro potlačeńı rušivých složek a zvýrazněńı v́ıcerozměrných

soubor̊u dat. Aplikačńı část práce je přitom věnovaná obraz̊um magnetické resonance

(MR) a jejich zpracováńı v př́ıpadě dvourozměrné (2-D) vrstvy a tř́ırozměrného (3-D)

obrazu. Potlačováńı rušivých složek je d̊uležitou úlohou zpracováńı obraz̊u pro odděleńı

signálu od šumu. Šum obraz̊u magnetické resonance se přitom skládá z náhodných signál̊u

generovaných elektronickými komponentami systému. Práce presentuje jak dvourozměrnou

dekompozici, prahováńı a následuj́ıćı rekonstrukci obraz̊u tak i potlačováńı rušivých složek

ve tř́ırozměrném prostoru s využit́ım DWT jako nové metody, která muže být aplikována

na zpracováńı biomedićınských obraz̊u. Nová uplatněńı komplexńı wavelet transformace

implementuj́ıćı duálńı strom (DT CWT) pro studie a aplikace na potlačováńı rušivých

složek obraz̊u MR je prezentována v hlavńı části práce. Segmentace obrazových textur

pomoćı rozvoďové (watershed) transformace a jejich klasifikace pomoćı vzor̊u źıskaných

z wavelet transformace tvoř́ı daľśı část práce. Vzory jsou přitom využity jako vstupy do

samoorganizuj́ıćı se neuronovou śı̌t.

Daľśım tématem práce je vizualizace 2-D vrstev a 3-D obraz̊u pomoci systému MAT-

LAB. Tato cesta umožňuje zobrazit obraz bez použ́ıváńı speciálńıch technických pomůcek

nutných pro vizualizaci 3-D obraz̊u nebo použ́ıváńı speciálńıch a často velice složitých

komerčńıch programů. Aplikace navržených algoritmů je zejména v oblasti zobrazováńı

výsledk̊u źıskaných pomoćı magnetické rezonance (MRI) jako moderńı vyšetřovaćı metody

použ́ıvané hlavně v lékařské praxi pro źıskáváńı vysoce kvalitńıch obraz̊u vnitřńıch orgán̊u

lidského těla. Vizualizace sad MRI dat je přitom d̊uležitá zejména pro lékařskou diagnos-

tiku.

Práce prezentuje v teoretické části základńı matematické metody analýzy a zpracováńı

biomedićınských obraz̊u zahrnuj́ıćı diskrétńı Fourierovu transformaci (DFT) a zejména

diskrétńı wavelet transformaci (DWT), která se stále významněji uplatňuje při analýze

a potlačováńı rušivých složek signál̊u. Práce přitom zahrnuje i tř́ırozměrné zpracováńı

obraz̊u pomoćı DWT (3-D DWT), které je z algoritmického hlediska zobecněńım metod

dvourozměrných a tvoř́ı výzkumnou oblast, který má aplikace v r̊uzných vědńıch oborech

včetně biomedićıny, seismologie, analýzy životńıho prostřed́ı ap. Výsledky numerických

experiment̊u jsou dále hodnoceny z hlediska kvality obraz̊u na základě vyhodnocováńı

středńıch kvadratických chyb (MSE) a maximálńıch hodnot poměr̊u signál - šum (PSNR)



s ohledem na typ šumu a implementované wavelet funkce. Při rozborech jsou přitom

využité vlastnosti wavelet funkćı zahrnuj́ıćı zejména jejich dobrou časovou a frekvenčńı

lokalizaci. Tato vlastnost je zejména d̊uležitá pro zpracováńı nestacionárńıch signál̊u, které

se vyskytuj́ı v biomedićıně a zahrnuj́ı EEG a EKG signály a dále biomedićınské obrazy.

V práci je ukázáno i porovnáńı s klasickou Fourierovou transformaćı, která poskytuje

jen spektrálńı informace o celém signálu a neumožňuje časovou lokalizaci nestacionárńıch

komponent pozorovaných dat.

Komplexńı wavelet transformace implementuj́ıćı duálńı strom jako nová transformace,

kterou navrhl Dr. Nick Kingsbury z Cambridge university, je analyzována a implemen-

tována v hlavńı části práce. Práce popisuje teorii této transformace s následuj́ıćı analýzou

a diskuśı jej́ıch výhod ve srovnáńı s klasickou WT. Tato rozš́ı̌rená transformace je dále

aplikována na analýzu a vyhodnocováńı MRI dat. Experimentálńı výsledky ukazuj́ı že

potlačováńı rušivých složek signál̊u pomoćı CWT metody výrazně zvyšuje hodnoty PSNR

reálných MRI soubor̊u.

Daľśı část práce je věnována popisu základńıch princip̊u rozvoďové transformace použité

pro segmentaci MR obraz̊u. Po jej́ım ověřeńı na simulovaných datech jsou navržené al-

goritmy následně užity pro segmentaci MR obrazu kolena. Anatomické oblasti kolena,

které zahrnuj́ı svaly, kosti a tkáně jsou snadno touto transformaćı odlǐseny. Segmentace

je přitom velmi d̊uležitá i v daľśıch biomedićınských aplikaćıch a může být použ́ıvána k

diagnóze nemoćı např́ıklad při detekováńı mozkových nádor̊u.

Analýza umělých textur pomoćı wavelet dekompozice obrazu je v práce představena

jako metoda pro předzpracováńı obraz̊u z hlediska jejich následné klasifikace. Vlastnosti

obrazových segment̊u jsou přitom źıskány ze středńıch hodnot nebo směrodatných od-

chylek wavelet koeficient̊u. Tyto vzory tvoř́ı sloupcové vektory pro vstup do samoorga-

nizuj́ıćı neuronové śıtě z hlediska jejich klasifikace. Navržené algoritmy zahrnuj́ı rovněž

výpočet hranic jednotlivých tř́ıd. Analýza textur nacháźı přitom uplatněńı v r̊uzných ap-

likaćıch, které zahrnuj́ı dálkové sńımáńı, družicová pozorováńı, zpracováńı obraz̊u a daľśı.

V závěru práce jsou formulovány návrhy pro daľśı výzkumnou práci v uvedené oblasti.

Disertačńı práce poskytuje nav́ıc i popis užit́ı Matlab Web Server (MWS) pro vzdálené

zpracováńı a vizualizaci biomedićınských obraz̊u přes webové rozhrańı.

Kĺıčová slova

Diskrétńı wavelet transformace - dekompozice a rekonstrukce obraz̊u - komplexńı wavelet

transformace - potlačováńı rušivých složek obraz̊u - zpracováńı biomedićınských dat - seg-

mentace obraz̊u - specifikace vlastnost́ı - klasifikace - umělé neuronové śıtě - vizualizace
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1

Introduction

Digital signal processing (DSP) describes the science that tries to analyze, generate

and manipulate measured real world signals with the help of a digital computer. These

signals can be anything that is a collection of numbers, or measurements and the most

commonly used signals include images, audio (such as digitally recorded speech and music)

and medical and seismic data. In most digital signal processing applications, the frequency

content of the signal is very important. The Fourier transform (FT) is probably the most

popular transform used to obtain the frequency spectrum of a signal.

Noise removal or de-noising is an important task in image processing. Image enhance-

ment is a collection of techniques that improve the quality of the given image, that is

making certain features of the image easier to see or reducing the noise. In general, the

results of the noise removal have a strong influence on the quality of the image processing

techniques.

Noise generated by electronic components in instrumentation is a common type of ran-

dom signal that is present in much biomedical data even though contemporary electronic

design minimizes this noise. Often those components of a signal which are not understood

are classified as noise. The ultimate basis for deciding what constitutes noise should be de-

rived from considerations about the experimental or clinical measurements and the source

of a a signal [6]. Ideally when a priori knowledge for judging whether certain components

of a signal represent the desired measurement or not is known then the signal processing

method is chosen to enhance the desired signal and reduce undesired signal components.

In some cases this information may not be known and it may be necessary to examine the

results of the signal processing steps to assess whether the output signal exhibits some

apparent separation into desired and noise components.

The field of imaging provides many examples of both biomedical images and biomedical

image processing. Magnetic resonance imaging (MRI) is excellent for showing abnormal-

ities of the brain such as: stroke, hemorrhage, tumor, multiple sclerosis or lesions. In the

MRI basic signals are currents induced in a coil caused by the movement of molecu-

lar dipoles as the molecules resume a condition of random orientation after having been

aligned by the imposed magnetic field. Signal processing is required to detect and decode

them, which is done in terms of the spatial locations of the dipoles (which is related to
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the type of tissue in which they are located). Much of the associated signal processing is

based on Fourier transform. Since MRI utilizes two-dimensional Fourier transforms the

basic concepts are the same.

FIGURE 1.1. Sequence of MR image slices FIGURE 1.2. 3-D model visualization

In addition, once an image is constructed it is often desirable to process it to enhance

the visibility of certain features such as the edges of a tumor. Noise in MR images consists

of random signals that do not come from the tissues but from other sources in the machine

and environment that do not contribute to the tissue differentiation. The noise of an image

gives it a grainy appearance and mainly the noise is evenly spread and more uniform.

There are many advanced methods of image processing involving techniques some of

which are going to be encountered in the Chapter 3. Image filters are designed for noise

reduction in the MR images and better edge definition. Indeed, even though other imaging

modalities such as positron emission tomography (PET), ultrasound, and X-ray utilize

different physical principles for acquisition of the image, the signal processing methods

for enhancing images are similar.

Image processing can be defined as the manipulation of an image for the purpose of

either extracting information from the image or producing an alternative representation

of the image. There are numerous specific motivations for image processing but many

fall into the following categories: (i) to remove unwanted signal components that are

corrupting the image and (ii) to extract information by rendering it in a more obvious or

more useful form.
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1.1 Objectives of the Thesis

The main goal of the thesis is to show the de-noising algorithms based upon the discrete

wavelet transform (DWT) that can be applied successfully to enhance noisy multidimen-

sional magnetic resonance (MR) data sets i.e two-dimensional (2-D) image slices and

three-dimensional (3-D) image volumes. Segmentation and classification of image tex-

tures are considered as new methods which might find their use in the classification of

MR images. The work and results presented in the thesis have been also published in

[71, 58, 61, 59, 57, 60].

The thesis proposes different methods for processing of biomedical image data: the

traditional Fourier transform and the wavelet transform. Recently a dual tree complex

wavelet transform (DT CWT) was developed and has added advantages over classical

methods, these include shift invariance and improved directionality. DT CWT was in-

troduced by Dr. Nick Kingsbury of Cambridge University and is now widely used by a

sizeable research groups at Brooklyn University [75] and Rice University [27, 28].

In the thesis, wavelet transform is used for multiscale signal analysis. The de-noising

algorithms apply a chosen wavelet on the wavelet decomposition and for the reconstruction

of MRI images. DWT reduces the noise effectively, preserving the edge details of the

image. Examples are provided to show the de-noising results and the experimental results

of the high signal-to-noise rate could be obtained to make a comparison of the different

wavelets used. Applications of the DWT [90] in the medical imaging field include noise

reduction, image enhancement, and segmentation, image reconstruction. Experiments are

done on 2-D and 3-D MRI data sets. Each part starts with algorithms for the 2-D case

(image slices) and then continues with generalizing the algorithms to handle the 3-D case

(image volumes). 3-D DWT algorithm is implemented as an extension of the existing

two-dimensional (2-D) algorithms.

An efficient and accurate watershed algorithm was developed by Vincent and Soille [94]

who used an immersion based approach to calculate the watershed lines. The method is

tested on the segmentation of simulated and MR image textures. Texture analysis is used

in a variety of applications, including satellite imaging and medical image processing.

Šonka [95] stresses that texture is scale dependent, therefore a multi-scale or multiresolu-

tion analysis of an image is required if texture is going to be analysed. We have proposed

the use of image wavelet decomposition [21, 73], using wavelet coefficients at selected

levels to describe image features. Classification of image segments into a given number of

classes using segment features is done by using a competitive neural network.
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1.2 Organization of the Thesis

This thesis is organized into eight chapters which can be summarized as follows:

• Chapter 1: A review of the problems to be addressed in this thesis and define the

goals of the work. Finally we present the organization of the thesis.

• Chapter 2: A brief introduction to the technology behind the magnetic resonance

imaging process in producing 2-D images (MRI slices) and the subsequent visual-

ization and presentation of three-dimensional 3-D models.

• Chapter 3: The mathematical background used for the image processing. The-

ory of mathematical tools used for image processing is explained. Time-scale and

time-frequency signal analysis methods which include the discrete Fourier transform

(DFT), discrete wavelet transform.

• Chapter 4: Applications of discrete wavelet transform and a presentation of the

experimental results of the de-noising algorithms for the noisy 2-D and 3-D data

sets.

• Chapter 5: An insight to the theory of dual tree complex wavelet transform. Appli-

cation of the resulting wavelet algorithm in the analysis and de-noising of magnetic

resonance biomedical images.

• Chapter 6: The principle of the watershed algorithm. A brief review of image

segmentation and feature extraction. The use of discrete wavelet transform in mul-

tiresolution study of texture.

• Chapter 7: Pattern recognition and classification by using competitive neural net-

works.

• Chapter 8: Presents the general conclusions of the thesis and propose possible

improvements and directions of future research work.

Finally in the appendices, Appendix B presents a description of image coding showing

how different types of images are displayed. Appendix C introduces the implementation

of the Matlab Web Server (MLWS) in remote data processing. Appendix D provides all

the MATLAB programs (scripts) used in the thesis.
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Biomedical Image Visualization

Progress in engineering and medicine demands new ways for visualization of large com-

plex data sets. The first step in biomedical image visualization is to obtain the MRI data.

In the thesis I have used MRI scan data taken at the Královské Vinohrady Hospital where

we have a collaboration work with some of the staff there. To test the visualizing programs

MRI data set of the brain has been used. The data is usually acquired in a file format

called DICOM. We will first explain a little bit of additional information about the MR

technology and the DICOM standard.

2.1 Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) scan is an imaging technique used primarily in

medical field to produce high quality images of the soft tissues of the human body. Using

brain images acquired by MRI often allows physicians and engineers to analyze the brain

without the need for invasive surgery. Other types of imaging modalities which exist

include ultrasound imaging, X-ray imaging, computed tomography (CT).

MRI combines a powerful magnet with an advanced computer system and radio waves

to produce accurate, detailed pictures of organs and tissues in order to diagnose a variety

of medical conditions. There are two types of MRI exams namely the high-field MRI and

low-field open MRI. The difference is in that high-field MRI produces a highest quality

image in the shortest time allowing a most accurate diagnosis to be made. Since MRI can

give high quality clear pictures of soft-tissue structures near and around bones, it is the

most sensitive exam for brain, spinal and joint problems. MRI is widely used to diagnose

sports related injuries, especially those affecting the knee. The images allow the physician

to see even very small tears and injuries to ligaments and muscles.

MR Technology

Magnetic resonance imaging (MRI) is based on the absorption and emission of energy

in the radio frequency range of the electromagnetic spectrum. Radio waves are directed

at protons, the nuclei of hydrogen atoms, in a strong magnetic field. The protons are first

excited and then relaxed emitting radio signals, which can be computer-processed to form

an image. In the body, protons are most abundant in the hydrogen atoms of water so that
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an MRI image shows differences in the water content and distribution in various body

tissues. Even different types of tissue within the same organ, such as the gray and white

matter of the brain, can be easily distinguished.

The DICOM Standard

Digital Imaging and Communications in Medicine (DICOM) Services offers an interface

for transmitting medical images and information in the DICOM industrial standard. As a

result, most medical image files (CT, MRI, PET, and Nuclear Medicine) are now received

in DICOM file format.

info = dicominfo(’MRI-12-Brain.dcm’)

info =

Filename: ’MRI-12-Brain.dcm’

FileModDate: ’10-Dec-2003 12:26:08’

FileSize: 222096

Format: ’DICOM’

FormatVersion: 3

Width: 326

Height: 326

BitDepth: 12

ColorType: ’grayscale’

.

.

Modality: ’MR’

Manufacturer: ’Elscint’

InstitutionName: ’FNKV Praha 10 2T Prestige’

.

.

PatientsName: [1x1 struct]

PatientID: ’760801/3589’

.

.

MRAcquisitionType: ’2D’

SequenceName: ’FSE’

SliceThickness: 3

ImagedNucleus: ’H’

.

.

FIGURE 2.1. DICOM information

A single DICOM file contains both a header (which stores information about the pa-

tient’s name, the type of scan - the modality used to create the data, image dimensions,
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etc), as well as the image data (which can contain information in three dimensions). The

dicomread MATLAB function can process the metadata fields defined by the DICOM

specification (Fig. 2.1).

2.2 Two-dimensional Medical Imaging Visualization

MRI acquisition of MRI images helps the biomedical engineers to fully analyze different

aspects of the brain thereby reducing the need for surgery. With appropriate image analy-

sis techniques, a biomedical engineer can use one small set of MR images and manipulate

them to analyze some interesting facets of the brain. To load MR images of the brain into

MATLAB and perform the necessary image analysis specifically the task will require us

to carry out the following steps:

• Loading the MRI data set file.

• Displaying a cross sectional view of all MR image frames in one figure (Fig. 2.2).

FIGURE 2.2. A sequence of MR image slices

• Isolating a frame of interest (e.g. slice no. 40) and display it as an individual figure.

2-D representation of the slice is done using the imshow function (Fig. 2.3).
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MR IMAGE SLICE

FIGURE 2.3. MR image slice

The images are called slices because they look like you have cut the brain in many slices

to see what’s inside. Using MATLAB movie function it’s possible to show all frames of

MRI data as a movie. Obtain sagittal slice image of brain and show as individual image.

Another major advantage of MRI is its ability to image in any plane unlike computer

tomography (CT) which is limited to one plane, the axial plane. An MRI system can

create axial (upper to lower) images as well as images in the sagittal (right to left) plane

and coronal (front to back) cross sectional view of the brain MR image (Fig. 2.4).

 (a) AXIAL SLICE  (b) SAGITTAL SLICE  (c) CORONAL SLICE

FIGURE 2.4. MR image of the head brain (a) axial slice, (b) sagittal slice, and (c) coronal slice

Sometimes it is necessary to interpolate the image data so that we have a smooth

grayscale image or when an image has been sampled, we can fill in the missing samples

by doing interpolation. Resampling the data to increase the resolution can be done using



2. Biomedical Image Visualization 9

the linear, spline or cubic spline interpolation (Fig. 2.5). In medical imaging this helps to

have a quality clear picture when for example we are zooming in for region of interest.

 (a) ORIGINAL IMAGE  (b) BILINEAR INTERPOLATION

 (c) CUBIC SPLINE INTERPOLATION  (d) BICUBIC INTERPOLATION

FIGURE 2.5. Interpolation of the (a) axial MR image of the head brain using (b) linear inter-
polation, (c) spline interpolation, and (d) cubic interpolation

2.3 Three-dimensional Biomedical Image Visualization

Three dimensional imaging [17] is now widely available and used often to aid in the

comprehension and application of volumetric MR data to diagnosis, planning and therapy.

Especially in clinical neurosurgery [29] 3-D visualization would benefit the planning and

surgical treatment immensely. Models of the image data can be visualized by volume or

contour surface rendering and can yield quantitative information. Assessment of three

dimensional anatomical images (SPECT, PET, MRI and CT) is useful to determine the

extent of lesions or tumors in the brain or other structures of interest. There are two

different options available for the 3-D visualization of the data. One would be to use a

commercially available program created specifically for this purpose. The second which is

going to be applied here is to use MATLAB codes and functions to do the visualization.
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Viewing the 3-D data

To create a 3-D model two-dimensional data sets (MRI slices) are stacked together to

form a volume of data. The data is then addressed with three-dimensional co-ordinates

(x, y, z) and oriented to choose a viewing direction. The three-dimensional array values are

represented as voxels (three-dimensional versions of pixels) f [m,n, k] where m = 1, . . . ,M

represents the x-pixel co-ordinates, n = 1, . . . , N represents the y-pixel co-ordinates and

k = 1, . . . , K is the index of the corresponding slices. Fig. 2.6 shows a subset of volume

data extracted after stacking together seventy MRI brain slices. The image volume of the

brain MRI scan is displayed as an isosurface using the volume visualization functions in

MATLAB including the lighting and perspective camera projection.

FIGURE 2.6. Extracted 3-D model of the brain and its visualization rendered as a 3-D view of
the stack of images
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2.4 Discussions

The developed 3-D visualization proved to operate efficiently with the MR images and

it enables a clearer depiction of the complex brain anatomy. Its versatility enabled the

integration of different objects (e.g., MRI data of the head and brain structures), different

volume cuts, transparency, and multimodal visualization. Such properties enable efficient

representation of images aiming to medical utility: tumors can be presented in 3-D together

with surrounding MRI data.

A multimodal visualization MATLAB code was tested with the MR image data sets.

To reduce computational time of 3-D reconstruction of the MR image slices a volume of

interest (VOI) of size 100 × 400 × 70 voxels was extracted and rendered into 3-D model

producing an excellent 3-D image subvolume (Fig. 2.6). The most important subject of

biomedical visualization is to learn and understand how the software code accomplishes

the visualization, and also being able to modify the program to suit the user’s specifica-

tions. This is not normally possible when using some commercial software programs but

by using MATLAB and its good image processing tools, modifications and corrections

of the code can be done to suit requirements which might be needed. A MATLAB code

shown in Appendix D was written for a 3-D rendering program to analyze MRI scan

data, and using this code modifications can be made where necessary like changing the

colormap or displaying the image volume in different orientations.
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3

Mathematical Methods of Image Processing

The chapter deals with the mathematical and theoretical background of the methods

used in image processing namely the Fourier transform and wavelet transform. Discrete

one-dimensional or multi-dimensional transforms represent mathematical tools for efficient

signal and image analysis. Fourier analysis has an enormous impact in engineering, science,

and mathematics. For example most medical blood pressure transducers are designed

based on Fourier analysis. The list of engineering systems designed based on Fourier

analysis is just endless.

The mathematical theory of wavelets is not very old, yet the wavelet transform has

already become a fundamental tool in signal and image processing. It has been recognized

that a global Fourier transform gives good information of the spectrum of the signal

however unlike the wavelet transform it cannot easily detect high frequency bursts. Non-

stationary signals which are unpredictable like a speech signal or an EEG signal can be

easily analyzed using wavelets which necessitates the notion of frequency analysis that is

local in time (time-scale analysis). High frequency bursts for instance cannot be read off

or detected easily when using Fourier transform.

An important aspect of these transforms is the chance to extract relevant information

from a signal or the underlying process, which is actually present but hidden in its complex

representation.

3.1 Time-Frequency Analysis

Time-frequency analysis plays a central role in signal analysis. The Fourier Transform

(FT) is only suitable for stationary signals, i.e., signals whose frequency content does

not change with time. Fourier analysis is not well suited to describing local changes in

frequency content because the frequency components defined by the Fourier transform

have infinite (i.e. global) time support. FT just gives us the frequency components of a

signal.

3.1.1 Discrete Fourier Transform

Discrete Fourier transform (DFT) plays a central role in the implementation of many

signal and image processing algorithms. DFT is a mathematical transform which resolves
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a time series x(n) into the sum of an average component and a series of sinusoids with

different amplitudes and frequencies. To compute the frequency content of a signal (or

the frequency response of a system) we use the DTFT

X(ejω) =
∞∑

n=−∞
x(n) e−jωn (3.1)

It is easy to find an analytic expression for X(ejω) for all ω if x(n) has a closed-form

analytic expression. However, what if we have a discrete signal x(n) from a real-world

environment? Two problems which arise with the above are:

• to compute X(ejω0) for any ω0, we need to compute an infinite sum, this means we

need to wait forever before we get an answer for any frequency.

• It’s quite impossible to compute X(ejω) for all ω ∈ [0, 2π) because there is an

uncountably infinite number of points in that range.

There are two simple solutions to this: first, restrict x(n) to be a finite-length sequence

of N samples numbered from 0 to N − 1, i.e. x(n) is nonzero only between n = 0 and

n = N − 1 , second instead of computing X(ejω) for all frequencies, compute it only for

a finite number of points on [0, 2π)

The fact that x(n) is a finite-length sequence implies that the DTFT can be rewritten

as

X(ejω) =
N−1∑
n=0

x(n) e−jωn (3.2)

Computing the DTFT for only a finite number of frequency points means that we can

further simplify Eq. (3.2) to

X(ejωk) =
N−1∑
n=0

x(n) e−jωkn (3.3)

where ωk = 2πk
N

are the frequency samples; if we assume that there are N samples, then

k = 0, 1, . . . , N−1. That is, we are evaluating X(ejω) only at the frequency values ωk = 2πk
N

for k = 0, 1, . . . , N − 1. The resulting expression is

X(ejωk) =
N−1∑
n=0

x(n) e−j 2πkn
N (3.4)

The N -point discrete Fourier transform (DFT), X(k), of an N -point discrete-time se-

quence, x(n), is defined as

X(k) =
N−1∑
n=0

x(n) e−j2πkn/N (3.5)
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FIGURE 3.1. Comparison of DTFT and DFT of a sinusoidal signal sampled at 1Hz.

for k = 0, 1, . . . , N − 1. The DFT, X[k], is just a sampled version of the DTFT, X(ejω),

at ω = 2πk
N

. Another way to think of it is in terms of evaluating the z-transform, X(z),

at N points on the unit circle, z = e
j2πk

N (Fig. 3.2).

 ← z=ejω

2π/N

Im{z}

Re{z}

FIGURE 3.2. Z-transform the unit circle in the z-plane, showing (dots) the locations z = ejω at
which X(ejω)|ω = 2πk/N , 0 ≤ k ≤ N − 1, N = 8.

Sampling Theorem

To obtain a discrete-time signal x(n): sample a continuous-time signal x(t) every T

seconds. Given a sampling period of T seconds, the sampling frequency fs = 1
T

Hz, and
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the record length of an N -sample sequence is NT seconds. By sampling we throw out a lot

of information all values of x(t) between sampling points are lost. Under what conditions

can we reconstruct the original signal x(t) from its samples? Suppose x(t) is bandlimited,

such that

X(ω) = 0 for |ω| > ωm

Then x(t) is uniquely determined by its samples {x(nT )} if

ωs > 2ωm

where ωs = 2π/T and this is called the Nyquist sampling theorem

0 2 4 6 8 10 12 14 16
−1

−0.5

0

0.5

1

 t,n

 x
(t

),
x(

n
)

 ← x(t)

  ← x(n)

FIGURE 3.3. Sampled discrete signal x(n) from a continuous time signal x(t)

Inverse DFT

An important property of the discrete transform is that unlike the continuous case we

need not be concerned about the existence of the DFT or its inverse. The DFT and its

inverse always exist since we are only dealing with finite values. These comments are

directly applicable to two-dimensional and higher functions. For digital image processing,

existence of either the discrete transform or its inverse is not an issue. Now that we have

the frequency-domain samples X(k), how do we recover the time-domain signal x(n)?

The inverse of the DFT is defined as:

x(n) =
1

N

N−1∑
k=0

X(k) ej2πkn/N n = 0, 1, . . . , N − 1 (3.6)

Note that both x(n) and X(k) are actually periodic in N:

X(k + N) =
N−1∑
n=0

x(n) e−j
2π(k + N)n

N = X(k)

x(n + N) =
1

N

N−1∑
k=0

X(k) ej
2π(k + N)n

N = x(n)
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The fact that x(n) is periodic is another example of time-frequency duality: sampling in

the time domain results in a periodic DTFT and sampling in the frequency domain also

results in a a periodic time-domain sequence. But x(n) is a finite-length sequence, so how

can it be periodic? The answer to this is the discrete Fourier Series (DFS). Consider a

periodic sequence x̃(n) with period N :

x̃(n) =
∞∑

r=−∞
x(n + rN)

This sequence is formed by concatenating an infinite number of our original N -sample

x(n) sequences. another way to think of it is via the modulo notation:

x̃(n) = x[n mod N ] = x[(n)N ]

Continuous-time periodic sequences can be represented in terms of their Fourier series

components, the same is true for discrete-time periodic sequences:

x̃(n) =
1

N

N−1∑
k=0

X̃(k) ejkω0n (3.7)

ω0 = 2π
N

is the fundamental frequency. X̃(k) are the discrete Fourier series (DFS) coeffi-

cients given by

X̃(k) =
N−1∑
n=0

x̃(n) e−j2πkn/N (3.8)

Note that x̃(n) is defined for all n and X̃(k) is defined for all k. Also note that unlike the

continuous-time Fourier series, the upper limit of the summation in the formula for x̃(n)

is finite: this is because of the periodicity of ej 2πn
N .

But its obvious that the equations for the DFS and IDFS are identical to those for

DFT and IDFT. The mathematics is the same, but the interpretation is different, DFT

takes an N -sample time-domain sequence and produces an N -sample frequency-domain

sequence. DFS takes a periodic (with period N) time-domain sequence and produces a

periodic N -sample frequency-domain sequence. One way to think about it is that the

DFT operates on one period of an underlying periodic time-domain sequence and returns

one period of an underlying periodic frequency-domain sequence.

From Eq. (3.5) it can be seen that the components of the Fourier transform are complex

quantities. So it’s necessary to express X(k) in a polar co-ordinate form.

X(k) = |X(k)| e−jφ(k) (3.9)

where

|X(k)| =
(
R2(k) + I2(k)

)
(3.10)
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is the magnitude or spectrum of the Fourier transform and

φ(k) = tan−1

(
I(k)

R(k)

)
(3.11)

is the phase angle or phase spectrum of the transform. In Eqs. (3.10) and (3.11), R(k) and

I(k) are the real and imaginary parts of X(k) respectively. However in terms of image

enhancement we are most concerned primarily with properties of the spectrum. Another

quantity commonly used is the power spectrum or spectral density simply defined as the

square of the Fourier magnitude

P (k) = |X(k)|2 (3.12)

From Eq. (3.5) it can be seen that the computation of X(k) requires N2 complex

multiplications, thus the DFT is an O(N2) process. An algorithm was developed by Tukey

and Cooley in 1965 called the Fast Fourier Transform (FFT) [16] that speeds up the

process by computing the DFT using O(N log N) operations. Note that the FFT is just

a faster algorithm for computing the DFT it does not produce a different result.

3.1.2 Short-Time Fourier Transform

To analyze non-stationary signals such as image and speech it’s necessary to have a good

time and frequency localization. To solve this problem, the Short-Time Fourier Transform

(STFT) was introduced by Dennis Gabor (1946). In STFT, the non-stationary signal is

divided into small portions, which are assumed to be stationary [70, 87]. This is done using

a window function of a chosen width, which is shifted and multiplied with the signal to

obtain the small stationary signals. The Fourier Transform is then applied to each of

these segments mapping a signal into a two-dimensional function of time and frequency

(time-frequency plane). STFT thus provides some information about both when and at

what frequencies a signal event occurs.

Consider a sinusoidal signal (Fig. 3.4(a)) consisting of two frequencies, one frequency

f1 = 0.1 Hz existing over an interval T = 256s and the second a frequency f2 = 0.35 Hz

existing over another interval T = 256s. Using DFT we will only get the information

that the signal has two components of 0.1 Hz and 0.35 Hz but won’t say when they start

and stop but the STFT will do it i.e. time and frequency realization (Fig. 3.4(c) and

(d)). A graphical display of the magnitude of the STFT, is called the spectrogram of the

signal. To assume stationarity, the window is supposed to be narrow, which results in

a poor frequency resolution, i.e., it is difficult to know the exact frequency components

that exist in the signal; only the band of frequencies that exist is obtained. If the width
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FIGURE 3.4. Signal analysis presenting (a) the original signal, (b) its spectrum, (c) 3-D spec-
trogram using a window length of 16 samples, and (d) 2-D spectrogram

of the window is increased, frequency resolution improves but time resolution becomes

poor, i.e., it is difficult to know what frequencies occur at which time intervals. Also,

choosing a wide window may violate the condition of stationarity. Thus, achieving good

time and frequency resolution simultaneously is impossible as summarized in Tab.3.1.

Consequently, depending on the application, a compromise on the window size has to be

TABLE 3.1. Time and Frequency resolution

Narrow Window Good time resolution Poor frequency resolution
Wide Window Poor time resolution Good frequency resolution

made. Once the window function is decided, the frequency and time resolutions are fixed

for all frequencies and all times. This is a major drawback of the STFT and an alternative

to this method is the wavelet transform. The most important feature of wavelet transforms

is that they analyze different frequency components of a signal with different resolutions.
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3.1.3 Two-dimensional Discrete Fourier Transform

Two-dimensional discrete Fourier transform is used for the processing of images. Basis

functions are sinusoids with frequency u in one direction times sinusoids with frequency

v in the other. For an M × N image f [m,n], these basis functions can be replaced for

computational purposes by complex exponentials ei2πum/M and ei2πvn/N to evaluate the

discrete Fourier transform. It is taken by applying the one-dimensional transform to each

row, and then to each column. For an M × N image, the 2-D DFT is usually defined as:

F (u, v) =
1

MN

M−1∑
m=0

N−1∑
n=0

f(m,n) e−i2π(um/M + vn/N) (3.13)

and its inverse transform is

f(m,n) =
M−1∑
u=0

N−1∑
v=0

F (u, v) ei2π(um + vn) (3.14)

where F [u, v] in the frequency domain is the spectrum of the image and m = 0, 1, . . . , M−
1, n = 0, 1, . . . , N − 1, u = 0, 1, . . . , M − 1, v = 0, 1, . . . , N − 1 are all discrete variables. As

in the 1-D case the Fourier spectrum, phase angle and power spectrum for 2-D discrete

transform are defined as:

|F (u, v)| =
(
R2(u, v) + I2(u, v)

)
(3.15)

φ(u, v) = tan−1

(
I(u, v)

R(u, v)

)
(3.16)

P (u, v) = |F (u, v)|2 (3.17)

where R(u, v) and I(u, v) are the real and imaginary parts of (u, v) respectively. u, v are

integers. The value of the transform at (u, v) = (0, 0) from Eq. (3.13) is

F (0, 0) =
1

MN

M−1∑
m=0

N−1∑
n=0

f(m,n) (3.18)

which is the mean of all pixels in the image, thus the Fourier transform at the origin is

equal to the mean of the gray level of the image. Because both frequencies are zero at the

origin, F (0, 0) is sometimes called the dc component of the spectrum.

Properties of 2-D DFT

There are many properties of the DFT that give insight into the content of the frequency

domain representation of a signal and allow us to manipulate signals in one domain or

the other. The 2-D DFT has many properties that are useful in image processing and a

few interesting properties of these include:
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Translation

A simple relationship that can be derived for shifting an image in one domain or the

other. The Fourier transform pair has the following translation properties:

f(m,n) e−i2π(u0m/M + v0n/N) ⇔ F (u − u0, v − v0) (3.19)

and

f(m − m0, n − n0) ⇔ F (u, v) e−i2π(um0/M + vn0/N) (3.20)

Scaling

Shrinking in one domain causes expansion in the other for the 2-D DFT. This means that

as an object grows in an image, the corresponding features in the frequency domain will

expand. The equation governing this is:

f(am, bn) ⇔ 1

|ab| F
(u

a
,
v

b

)
(3.21)

From Fourier theory we know that compression in time is equivalent to stretching the

spectrum and shifting it upwards:

Periodicity and conjugate symmetry

The discrete Fourier transform has the following periodicity properties with period N :

F (u, v) = F (u + M, v) = F (u, v + N) = F (u + M, v + N) (3.22)

The inverse transform is also periodic:

f(m,n) = F (m + M,n) = F (m,n + N) = F (m + M,n + N) (3.23)

The idea of conjugate symmetry is

F (u, v) = F ∗(−u,−v) (3.24)

where ∗ indicates the standard conjugate operation on a complex number. The spectrum

is also symmetric about the origin:

|F (u, v)| = |F (−u,−v)| (3.25)

These properties allow for a rearrangement for the magnitude spectrum, either before

or after the transform, so that one whole period is viewed with its origin shifted to the

frequency point (N/2, N/2).
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Separability

The 2-D Fourier transform is linearly separable i.e. the Fourier transform of a two-

dimensional image is the Fourier transform of the rows followed by the Fourier transform

of the resulting columns (or vice versa) as shown below.

F (u, v) =
M−1∑
m=0

N−1∑
n=0

f(m,n) e−i2π(um/M + vn/N)

=
M−1∑
m=0

N−1∑
n=0

f(m,n) e−i2πum/M e−i2πvn/N

=
M−1∑
m=0

[
N−1∑
n=0

f(m,n) e−i2πum/M

]
e−i2πvn/N

The fast Fourier transform (FFT) [16] is an efficient algorithm to calculate the DFT. For

the 2-D DFT a total of O(N4) operations are required and by using the FFT the number

of operations can be reduced to an order of O(N2 log N). N and M are commonly powers

of 2 (for the FFT). Therefore the overall complexity of a 2-D FFT is O(N2 log N), where

N2 equals the number of pixels in the image.

Thus an M×N image has an M×N set of (complex) Fourier coefficients. To implement

this transform, we would like an analog of the FFT, which will let us quickly compute

the coefficients of the transform. In fact, we can do better. The two dimensional DFT

is separable into two one dimensional DFTs which can be implemented with an FFT

algorithm.

Convolution Theorem

The Fourier convolution theorem states that convolution in one domain is multiplication

in the other and vice versa. The discrete convolution of two functions f(x, y) and h(x, y)

of size M × N denoted by f(x, y) ∗ h(x, y) and is defined by Eq. (3.26)

f(x, y) ∗ h(x, y) =
M−1∑
m=0

N−1∑
n=0

f(m,n) h(x − m, y − n) (3.26)

can think of f as representing an image and h represents a filter. The convolution the-

orem consists of the following relationships between the two functions and their Fourier

transforms:

f(x, y) ∗ h(x, y) ⇔ F (u, v) H(u, v) (3.27)

and

f(x, y) h(x, y) ⇔ F (u, v) ∗ H(u, v) (3.28)
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Frequency Domain Filtering

One of the applications of the convolution theorem is filtering in the frequency domain.

Filtering may be achieved in the transform domain by first computing the DFT, applying

a filter which modifies the transform values, and then applying an inverse transform. The

image f(x, y) is first transformed to give F (u, v) and finally the transform is modified

using the equation below

G(u, v) = H(u, v) F (u, v)

where H(u, v) is the filter function. The filtered transformed is then inverse-transformed to

give the filtered image g(x, y). An illustration of this application is represented in Fig. 3.5.
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3.2 Time-Scale Analysis

The continuous wavelet transform (CWT) provides a time-scale description similar to

that of the STFT with a few important differences: frequency is related to scale and the

CWT is able to resolve both time and scale (frequency) events better than the STFT.

By time localization we mean the ability to clearly identify signal events which show up

during a short time interval, such as an abrupt impulse. To distinguish such transient

behavior of a signal [92] it’s necessary to have some basis functions which are very short

(high frequency) and long (low frequency) depending on the resolution of the frequency

analysis.
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FIGURE 3.6. Wavelet functions in time and frequency domain

This can be achieved with the wavelet transform, where the basis functions are obtained

from a single prototype wavelet (Eq. (3.29)) (mother wavelet) by translation and dilation

(contraction)

Wa,b(t) =
1√
a

W

(
t − b

a

)
(3.29)
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where a ∈ R+, b ∈ R. For large a, the basis function becomes a stretched version of the

prototype wavelet which is a low frequency function, while for small a the basis function

becomes a contracted wavelet which is a high frequency function. The continuous wavelet

transform (CWT) [50] is then defined as the convolution of x(t) with a wavelet function,

W (t), shifted in time by a translation parameter b and a dilation parameter a (Eq. (3.30))

XW (a, b) =
1√
a

∫ ∞

−∞
W

(
t − b

a

)
x(t)dt (3.30)

At high frequencies the CWT is sharper in time while at low frequencies the CWT is

sharper in frequency. W (t) denotes the mother wavelet. The parameter a represents the

scale index that is the reciprocal of the frequency. The parameter b indicates the time

shifting (or translation). Fig. 3.6 illustrates some of the commonly used wavelet functions.

Generation of the wavelet family by translation (parameter b) and dilation (parameter

a). The graph of W
(

t−b
a

)
is obtained by stretching the graph of W (t) by the factor a,

called the scale, and shifting in time by b. Wavelet series are thus constructed with two

parameters scale and translation, these parameters make it possible to analyze a signal

behavior at a dense set of time locations and with respect to a vast range of scales,

thus providing the ability to zoom in on the transient behavior of the signal. Suppose a
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and (b) its spectrum pointing to its frequency f = 0.2 Hz. The signal impulse is not detected
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sinusoidal signal (Fig. 3.7(a)) of length 512 seconds with an impulse at 256 s, using the

DFT we will only get the information that the signal has a frequency component of 0.2 Hz

(Fig. 3.7(b)) but won’t say when the impulse occurred. The STFT (Fig. 3.8(a)) doesn’t tell

us exactly where is the impulse but looking at the spectrograms of the DWT (Fig. 3.8(c))

and CWT (Fig. 3.8(e)) it’s possible to find exactly when the impulse occurred.
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The scalogram is defined as the square magnitude of the CWT coefficients, |W (a, b)|2.
The scalogram can be computed at any scale and the position can also be shifted con-

tinuously over the entire time domain of the signal being analyzed. In contrast to STFT,

which uses a single analysis window, the wavelet transform uses short windows at high

frequencies and long windows at low frequencies. This results in multi-resolution analysis

by which the signal is analyzed with different resolutions at different frequencies, i.e., both

frequency resolution and time resolution vary in the time-frequency.

3.2.1 Discrete Wavelet Transform

By restricting to a discrete set of parameters we get the Discrete Wavelet Transform

(DWT) [64] which corresponds to an orthogonal basis of functions all derived from a single

function called the mother wavelet.

CWT is redundant since the parameters (a, b) are continuous thus it’s necessary to

discretize the grid on the time-scale plane corresponding to a discrete set of continuous

basis functions. This lead us to a question: how can we discretize the wavelet in Eq. (3.29)?

Wj,k(t) =
1√
aj

W

(
t − bk

aj

)
(3.31)

In theory aj = aj
0 and bk = kb0a

j
0 where j, k ∈ Z, a0 > 1, b0 �= 0. The discrete form

of the wavelet is shown in Eq. (3.31), where j controls the dilation and k controls the

translation. Two popular choices for the discrete wavelet parameters a0 and b0 are 2 and

1 respectively, a configuration that is known as the dyadic grid arrangement, Eq. (3.31)

can be written as

Wj,k(t) = a
−j/2
0 . W (a−j

0 t − kb0)
= 2−j/2. W (2−j t − k)

This is discretization on a dyadic grid which occurs for a0 = 2, b0 = 1. The a
−j/2
0 term

scales the signal. Discrete dyadic wavelets are usually selected to be orthonormal, which

means that the wavelets are both orthogonal and normalized to have unit energy. The

discrete wavelet transform (DWT) [50] is another way to decompose a time series into

a sequence of components with different scales. The original signal can be reconstructed

from these components. There is no redundancy in the output from the DWT (Fig. 3.8(d))

unlike the CWT (Fig. 3.8(f)) which generates a redundant two-dimensional scalogram.

Wavelet analysis is simply the process of decomposing a signal into shifted and scaled

versions of a mother (initial) wavelet. An important property of wavelet analysis is perfect

reconstruction, which is the process of reassembling a decomposed signal or image into
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its original form without loss of information. For decomposition and reconstruction two

types of basis functions normally used are:

• Scaling function Φjk(t)

Φjk(t) = 2−
j
2 Φ0(2

−j t − k) (3.32)

• Wavelet Wjk(t)

Wjk(t) = 2−
j
2 Ψ0(2

−j t − k) (3.33)

where m stands for dilation or compression and k is the translation index. Every basis

function W is orthogonal to every basis function Φ. Wavelets are functions defined over

a finite interval and have an average value of zero.

An example of a simple wavelet function is called the Haar wavelet. Historically the

Haar function was the original wavelet but with poor approximation. In translation the

word wavelet is a small wave. In Haar’s case it is a square wave. The square wave W (t) has

compact support and it comes from a FIR filter with finite length. The words compact

support mean that the interval here [0, 1] is closed and outside W (t) is zero (bounded

interval). The Haar mother wavelet W (t) and scaling function Φ(t) are defined as follows:

Φ(t) =

{
1 0 ≤ t ≤ 1

0 otherwise

W (t) =

⎧⎨
⎩

1 0 ≤ t ≤ 1
2−1 1

2
≤ t ≤ 1

0 otherwise
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FIGURE 3.9. An example of (a) Haar scaling function and (b) Haar wavelet
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Filter Bank Decomposition

The discrete wavelet transform (DWT) [42] is commonly implemented using dyadic

multirate filter banks, which are sets of filters that divide a signal frequency band into

subbands. At each scale in DWT, the approximation coefficients are generated from a low-

pass filter and are associated with the low frequency trend while the detail coefficients

are output from a high-pass filter and capture the high frequency components of the time

series

The inverse discrete wavelet transform (IDWT) reconstructs a signal from the approx-

imation and detail coefficients derived from decomposition. The IDWT differs from the

DWT in that it requires upsampling and filtering, in that order. Upsampling, also known

as interpolating, means the insertion of zeros between samples in a signal. The right side

of Fig. 3.11 shows an example of reconstruction.

In Fig. 3.10, L and H represent the scaling function and wavelet function respectively.

The wavelet filter coefficients are obtained from alternating flip of scaling filter coefficients.

Short filter results in faster computation of convolutions. A pair of filters: a low-pass filter

L and a high-pass filter H, split a signal’s bandwidth in two halves. This provides the

coefficients cj(k) and dj(k) for the decomposition of the signal into its scaling function

and wavelet function components.

 L

 H

 D

 D
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 g

FIGURE 3.10. One-dimensional signal decomposition

The 1-D forward wavelet transform of a discrete-time signal x(n) (n = 0, 1, . . . , N) is

performed by convolving signal x(n) with both a half-band low-pass filter L and high-pass

filter H and downsampling by two.
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c(n) =
L−1∑
n=0

h0(k) x(n − k) d(n) =
L−1∑
n=0

h1(k) x(n − k) (3.34)

where c(n) represent the approximation coefficients for n = 0, 1, 2 . . . , N − 1 and d(n)

are the detail coefficients, h0 and h1 , are coefficients of the discrete-time filters L and H

respectively

{h0(n)}L−1
n=0 = (h0(0), h0(1), . . . , h0(L − 1))

{h1(n)}L−1
n=0 = (h1(0), h1(1), . . . , h1(L − 1))
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FIGURE 3.11. Signal decomposition and reconstruction

The connection between filter banks and wavelets is that the highpass filter leads to

W (t) and the lowpass filter leads to a scaling function Φ(t). A filter bank is a set of filters,

the analysis bank often has two filters, lowpass H0 and highpass H1. They split the input

signal into frequency bands. The filtered outputs from both filters give a double signal

length. To overcome this we have to downsample or decimate. To compensate for losing

half the components in downsampling we multiply the downsampled signal y(2n) by
√

2.

This normalizing factor is usually included with the filter bank, so that

lowpass : H0(ω) changes to C(ω) =
√

2 H0(ω)

highpass : H1(ω) changes to D(ω) =
√

2 H1(ω)
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For the lowpass coefficients of a Haar filter h(0) = h(1) = 1
2

for the original coefficients

and introducing c(0), c(1) for the normalized coefficients of C we have:

c(0) = c(1) =

√
2

2
=

1√
2

Similarly for the highpass coefficients 1
2

and −1
2

are multiplied by
√

2, in D:

d(0) =

√
2

2
=

1√
2

and d(1) = −
√

2

2
= − 1√

2

The response at frequency ω = 0 is C =
√

2 rather than 1. Decimation of filters in

the time domain is carried out in such a way that downsampling follows the filter C, in

operating on x. The combination of filtering by C and decimation by 2 is represented by

a rectangular matrix L that no longer has constant diagonals.

L = (↓ 2) C =

⎡
⎢⎢⎣

1√
2

1√
2

1√
2

1√
2

. .

. .

⎤
⎥⎥⎦

The entries are c(0) and c(1) but half the rows have gone (downsampling removes every

second row). Similarly the decimated highpass filter is represented by a rectangular matrix

B:

B = (↓ 2) D =

⎡
⎢⎢⎣

− 1√
2

1√
2

− 1√
2

1√
2

. .

. .

⎤
⎥⎥⎦

Putting the lowpass L and the highpass B into one matrix. The rectangular L and B fit

into a square matrix:

[
(↓ 2) C
(↓ 2) D

]
=

[
L
B

]
=

1√
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1
1 1

. .

. .
−1 1

−1 1
. .
. .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This matrix represents the whole analysis bank. All rows are unit vectors (because of the

division by
√

2 - the normalizing factor). The row vectors are mutually orthogonal and at

the same time the columns are also orthogonal unit vectors.

The combined square matrix is invertible. The inverse is the transpose (the transpose

of downsampling is upsampling (↓ 2)T = (↑ 2)) - Chapter 3 [83]. Upsampling places zeros
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into the odd-numbered components, downsampling removes odd-numbered components:

[
L
B

]−1

=
[

LT BT
]

=
1√
2

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −1
1 1

1 −1
1 1

. .

. .

⎤
⎥⎥⎥⎥⎥⎥⎦

The second matrix [LT BT ] represents the synthesis bank. this is an orthogonal filter bank,

because inverse = transpose. The synthesis bank is the transpose of the analysis bank.

When one follows the other we have perfect reconstruction

[
LT BT

] [ L
B

]
= LT L + BT B = I

Perfect reconstruction is an important property of wavelet filter banks and as shown the

Haar filter bank has orthogonal filters which usually have the following properties:

• Coefficients of the high pass filter are an alternating flip of the lowpass filter

g(k) = (−1)k h(N − k)

• The filters are not symmetric, h and g have an even length

• The synthesis filters are mirror filters to analysis filters

H = (h0, h1, h2, h3) HT = ( h3, h2, h1, h0)

G = (h3, −h2, h1, −h0) GT = ( −h0, h1, −h2, h3)

In other words synthesis filters are transposes of analysis filters

Wavelet filters have finite length and this a property which makes them perform local

analysis, or the examination of a localized area of a larger signal.

Multi-resolution Analysis or Multi-level Decomposition

Termed multilevel decomposition, this process can be repeated, with successive approx-

imations (the output of the low-pass filter in the first bank) being decomposed in turn,

so that one signal is broken down into a number of components. This is called the Mallat

algorithm or Mallat-tree decomposition.

A three-level decomposition is shown in Fig. 3.12. In this illustration, a3 represents the

approximation coefficients, while d3, d2 and d1 represent the detail coefficients resulting

from the three-level decomposition. After each decomposition, we employ decimation by

two to remove every other sample and, therefore, reduce the amount of data present.
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FIGURE 3.12. Multi-level decomposition

An example of a simulated signal decomposition into three levels using a Daubechies

wavelet function is illustrated in Fig. 3.13. The scalogram of the resulting decomposition

is also shown.
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Dilation Equation

The construction of wavelets [82] begins with the scaling function Φ(x). The dilation

equation or refinement equation connects Φ(x) to translates of Φ(2x)

Φ(x) =
N−1∑
k=0

ck Φ(2x − k) (3.35)

This is the dilation equation, it is a two scale equation involving x and 2x where x

represents the time variable. For example the coefficients for Haar are c0 = c1 = 1,

the box function is the sum of two half-width boxes. Then for the wavelet function W (x)

it is a combination of the same translates. The coefficients for Haar wavelet W (x) =

Φ(2x)−Φ(2x− 1) are 1 and -1. It can be easily seen that W (x) uses the same coefficients

as Φ(x) but in reverse order and with alternating signs,

W (x) =
N−1∑
k=0

(−1)kck Φ(2x − k) (3.36)

This construction makes W (x) orthogonal to Φ(x) and its translates. The key is that every

vector c0, c1, c2, c3 is automatically orthogonal to c0, −c2, c1, −c0. Then a question

arises of how to solve the dilation equation. Two principal methods exist one is by Fourier

transform and the other is by matrix products [82].

In order to solve the basic recursion equation Eq. (3.35), an iterative algorithm has

been proposed that will generate the successive approximations to Φ(x). If the algorithm

converges to a fixed point then that fixed point is a solution to Eq. (3.35), the iterations

are defined by

Φ(k+1)(x) =
N−1∑
k=0

ck Φ(k)(2x − k) (3.37)

for the kth iteration where an initial Φ(0)(x) must be given. Transforming the dilation

equation into frequency domain [83] (Chapter 6) instead of x and 2x the transform involves

ω and ω/2. The dilation equation becomes

Φ̂(ω) = H
(ω

2

)
Φ̂
(ω

2

)

Iterating this equation it connects ω/2 to ω/4:

Φ̂(ω) = H
(ω

2

) [
H
(ω

4

)
Φ̂
(ω

4

)]

After N -iterations, this becomes

Φ̂(ω) = H
(ω

2

)
H
(ω

4

)
· · ·H

( ω

2N

)
Φ̂
( ω

2N

)



3. Mathematical Methods of Image Processing 35

In the limits as N → ∞, we have a formula for the solution Φ̂(ω). Note that ( ω
2N ) is

approaching zero and φ̂(0) =
∫

Φ(x) dx is the area under the graph of Φ(x) which is

equal to one. The formal limit of the iteration leads to the infinite product for Φ̂:

Φ̂(ω) =
∞∏

j=1

H
( ω

2j

)

Fig. 3.14 shows how the fourth order Daubechies scaling function with four coefficients is

approximated by applying successive iterations to an initial box funtion. This is achieved

by using Eq. (3.37) which converges to a reliably Φ(x) after six iteration steps. From this

scaling function, the wavelet can also be generated using Eq. (3.36).
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FIGURE 3.14. Recurrent solution of the dilation equation for (a) the scaling function and (b)
the wavelet function
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3.2.2 Two-dimensional Discrete Wavelet Transform

Digital images are 2-D signals that require a two-dimensional wavelet transform. The

2-D DWT analyzes an image across rows and columns in such a way as to separate

horizontal, vertical and diagonal details. In the first stage [91] the rows of an N × N are

filtered using a high pass and low pass filters. This filtering is done using 1-D convolution

with the coefficients h0(k) and h1(k), since each row of the image is a one-dimensional

signal. This is followed by downsampling with a factor of 2 which removes every odd-

numbered sample in the filtered result this has the effect of removing every other column

of the N × N block giving an N × (N/2) image.

In the second stage 1-D convolution with h0(k) and h1(k) is applied to the columns

of the filtered image. Downsampling removes each odd-numbered sample in each column

of the now twice-filtered result which results in the removal of every other row. Each of

the branches in the tree is shown in the Fig. 3.15 therefore produces an (N/2) × (N/2)

subimage. This leads at each level to 4 different subbands HH, HL, LH and LL . The LL

is filtered again to get the next level representation, Fig. 3.15 summarizes the transform

for a one level decomposition.
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FIGURE 3.15. A one-level two-dimensional DWT decomposition
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The role of each branch in the analysis of an N ×N image can be explained as follows:

• Initial low pass filtering of the rows blurs the image values along each row followed

by low pass filtering along the columns which result in a low pass approximation of

the whole image.

• Low pass filtering of the rows followed by high pass filtering of the columns highlights

the changes that occur between the rows - horizontal details

• Initial high pass filtering of the original rows of the image highlights the changes

between elements in any given low. Subsequent low pass filtering of the columns blurs

the changes that may occur between the rows thus providing the vertical details

• High pass filtering of the rows followed by high pass filtering of the columns only

changes that are neither horizontal are emphasized. This sequence gives the diagonal

details of the original image.

The (N/2) × (N/2) low pass approximation is subjected to the same process as the

original image resulting in four (N/4) × (N/4) subimage: a low pass part, horizontal,

vertical and diagonal details. Analysis can continue until the subimages obtained contain

a single pixel only. Fig. 3.16 shows a two level decomposition of a DWT using the db4

wavelet on a 128 × 128 MR image.

 (a) ORIGINAL IMAGE  (b) IMAGE DECOMPOSITION

 HL

 LH

 HH

FIGURE 3.16. DWT image analysis presenting (a) the original image and (b) its decomposition
into the second level
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Reconstruction

To reconstruct the image from its 2-D DWT subimages (LH, HL,HH) the details are

recombined with the low pass approximation using upsampling and convolution as shown

in Fig. 3.17. Upsampling refers to the insertion of of a zero row after each existing row or

a zero column after each existing column. In the first stage the columns of the upsampled

subimages are convolved with the impulse responses hT
0 (k) and hT

1 (k) and in the second

stage the rows of the upsampled sums are convolved with the same impulse responses.
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FIGURE 3.17. Two-dimensional DWT reconstruction

3.2.3 Three-dimensional Discrete Wavelet Transform

Discrete Wavelet Transform (DWT) [66] is a separable, sub-band transform. Although

nonseparable wavelets can also be used for multidimensional signals, such filters are much

harder to design than are separable filters. As a result, their use has been limited in

image processing applications. 3-D wavelets can be constructed as separable products of

1-D wavelets by successively applying a 1-D analyzing wavelet in three spatial directions

(x, y, z).
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Fig. 3.18 shows a separable 3-D decomposition [42] of an image volume. The volume

F (x, y, z) is firstly filtered along the x-dimension, resulting in a low-pass image L(x, y, z)

and a high-pass image H(x, y, z). Since the size of L and H along the x-dimension is now

half that of F (x, y, z), down-sampling of the filtered volume in the x-dimension by two

can be done without loss of information. The down-sampling is done by dropping each

odd filtered value. Both L and H are then filtered along the y-dimension, resulting in four

decomposed sub-volumes: LL, LH, HL and HH. Once again, we can downsample the

sub-volumes by two, this time along the z-dimension. Then each of these four sub-volumes

are then filtered along the z-dimension, resulting in eight sub-volumes: LLL, LLH, LHL,

LHH, HLL, HLH, HHL and HHH (Fig 3.18 ).
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Reconstruction

After modifying the coefficients we can apply the inverse transform by convolving with

the respective low-pass and high-pass synthesis filters as described in [83] and [92]. The

reconstruction for a one-level three dimensional discrete wavelet transform (3-D DWT) is

illustrated by the following resulting structure which is presented in Fig. 3.19.
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4

Discrete Wavelet Transform Applications

Wavelet transform plays an increasingly important role in the medical signal analy-

sis and biomedical image processing. Wavelet transform analysis has been applied to a

wide variety of biomedical signals including: the ECG, EEG, MR images, heart sounds,

breath sounds, respiratory patterns, blood pressure trends, DNA sequences and other

biomedical applications. Various useful applications of wavelet transform decomposition

and reconstruction include:

• de-noising - decomposing an image into a low frequency approximation image and

a set of high frequency detailed images, performing thresholding and then recon-

structing the image from the thresholded coefficients [54].

• resolution enhancement - resampling image enhancement can significantly improve

the quality of the images

• reconstruction of missing regions or objects by using iterative wavelet transform

• image compression - digital images and digital video require tremendous amounts of

storage. Compression can significantly reduce both storage needs and transmission

times e.g. JPEG2000 and FBI fingerprint compression is built upon wavelets.

• edge detection - The spatial features of the image indicating the edges obtained by

multi-resolution wavelet transform of the high frequency details.

• feature extraction

• 3-D object processing - analysis and processing of 3-D medical data sets.

Noise

Noise in MR images consists of random signals that do not come from the tissues but

from other sources in the machine and environment that do not contribute to the tissue

differentiation. The noise of an image gives it a grainy appearance. Mainly the noise is

evenly spread and more uniform. There are two ways to corrupt an image with noise. A

noise image can be simply added to the original image (additive noise), or the noise values

can be multiplied by the original intensities (multiplicative noise).
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Image independent noise is often described by an additive noise model, where the noise

image f(i, j) is the sum of the true image s(i, j) and the noise n(i, j):

f(i, j) = s(i, j) + n(i, j)

In many cases, additive noise is evenly distributed over the frequency domain (i.e. white

noise), whereas an image contains mostly low frequency information. Hence, the noise is

dominant for high frequencies and its effects can be reduced using some kind of lowpass

filter.

The classification of noise is based upon the shape of the probability density function

or histogram for the discrete case of the noise. The first type of noise to be presented is

uniform noise. Fig. 4.1 shows a histogram of a uniform noise distribution. This can be

modelled as

p(n)=

{
1

2σ
√

3
for |n| ≤ σ

√
3

0 else
(4.1)

A uniform distribution shows that there are about the same number of counts for each

value bin.

FIGURE 4.1. Uniform distribution histogram for 1000 values generated using the rand MATLAB
function

The most common type of noise and the one that is mostly encountered is the Gaussian

noise. Gaussian distribution is assumed to be symmetrical about a mean of zero. The
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standard deviation (σ) is a measure of the amount of spread around the central peak.

At low standard deviations, the central bins are concentrated near the mean and the

peak is very tall and sharp. At high deviations the peak is lower and values are more

evenly distributed to outlying bins. The probability of larger and larger deviations can be

seen to decrease rapidly. Its probability density function (pdf) is defined according to the

equation stated below (Eq. 4.2):

p(n) =
1

σ
√

2π
e−

n2

2σ2 (4.2)

The frequency spectrum of such a signal is flat, that is, it has equal values at all frequencies.

Gaussian noise is evenly distributed across the entire range of frequencies. A histogram

of Gaussian noise is shown in Fig. 4.2.

FIGURE 4.2. Gaussian distribution histogram for 1000 values generated by using the MATLAB
software

Another common form of noise is data drop-out noise (commonly referred to as intensity

spikes, speckle or salt and pepper noise). Here, the noise is caused by errors in the data

transmission. The corrupted pixels are either set to the maximum value (which looks like

snow in the image) or have single bits flipped over. In some cases, single pixels are set

alternatively to zero or to the maximum value, giving the image a ‘salt and pepper’ like

appearance. Unaffected pixels always remain unchanged. The noise is usually quantified
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by the percentage of pixels which are corrupted. Salt-and-pepper noise takes on two gray

levels, Ip and Is. Fig. 4.3 shows a histogram for salt-and-pepper noise

FIGURE 4.3. Salt and pepper distribution histogram

4.1 Image De-noising

The reduction of noise present in images is an important aspect of image processing. De-

noising is a procedure to recover a signal that has been corrupted by noise. After discrete

wavelet decomposition the resulting coefficients can be modified to eliminate undesirable

signal components. To implement wavelet thresholding a wavelet shrinkage method for

de-noising the image has been verified. The proposed algorithm to be used is summarized

in Algorithm 1 and it consists of the following steps:

Algorithm 1: Wavelet image de-noising

• Choice of a wavelet (e.g. Haar, symmlet, etc) and number of

levels or scales for the decomposition. Computation of the forward

wavelet transform of the noisy image.

• Estimation of a threshold

• Choice of a shrinkage rule and application of the threshold to the

detail coefficients. This can be accomplished by hard (Eq. (4.3))

or soft thresholding (Eq. (4.4))

• Application of the inverse transform (wavelet reconstruction)

using the modified (thresholded) coefficients
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4.1.1 Thresholding

Thresholding is a technique used for signal and image de-noising. The shrinkage rule

define how we apply the threshold. There are two main approaches which are:

• Hard thresholding (Fig. 4.4(b)) deletes all coefficients that are smaller than the

threshold λ and keeps the others unchanged. The hard thresholding is defined as

follows:

ch(k)=

{
sign c(k) (|c(k) |) if |c(k) |> λ
0 if |c(k) |≤ λ

(4.3)

where λ is the threshold and the coefficients that are above the threshold are the

only ones to be considered. The coefficients whose absolute values are lower than

the threshold are set to zero.

• Soft thresholding (Fig. 4.4(c)) deletes the coefficients under the threshold, but scales

the ones that are left. The general soft shrinkage rule is defined by:

cs(k)=

{
sign c(k) (|c(k) | −λ) if |c(k) |> λ
0 if |c(k) |≤ λ

(4.4)

For an illustration of what has been described above a linear signal is thresholded

according to the methods described using a threshold λ of 0.5 (Fig. 4.4).
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FIGURE 4.4. An example of (a) linear signal thresholded using, (b) hard-thresholding, and
(c) soft-thresholding
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Global Threshold

The global threshold method derived by Donoho is given by Eq. (4.5) has a universal

threshold:

λ = σ
√

2 log(N) (4.5)

where N is the size of the coefficient arrays and σ2 is the noise variance of the signal

samples.

Level Dependent Threshold

Level dependent thresholding method is done by using Eq. (4.6). Estimation of the

noise standard deviation σk is done by using the robust median estimator in the highest

sub-band of the wavelet transform

λk = σk

√
2 log(N) (4.6)

where the scaled MAD noise estimator is computed by:

σk =
MADk

0.6745
=

(median(|ωi|))k

0.6745

where MAD is the median absolute deviation of the magnitudes of all the coefficients at

the finest decomposition scale and ωi are the coefficients for each given sub-band, the

factor 0.6745 in the denominator rescales the numerator so that σk is also a suitable

estimator. The threshold estimation method is repeated for each sub-band separately,

because the sub-bands exhibit significantly different characteristics.

Optimal Threshold Estimation

Estimate the mean square error function to that compute the error of the output to

minimize the function, the minimum MSE serves as a solution to the optimal threshold.

A function of the threshold value which is minimized is defined in Eq. (4.7).

G(λ) = MSE(λ) =
1

N
||y − yλ||2 (4.7)

If yλ is the output of the threshold algorithm with a threshold value λ and y is the

vector of the clean signal, the remaining noise on this result equals eλ = yλ − y. As the

notation indicates, the MSE is a function of the treshold value λ. Find the optimal value

of λ that minimizes MSE(λ) and the convergence of the algorithm.
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4.1.2 Measures of Image Quality

One of the issues of de-noising is the measure of the reconstruction error. In order to

separate the noise and image components from a single observation of a degraded image it

is necessary to assume or have knowledge about the statistical properties of the noise. To

get the measure of the wavelet filter performance, the experimental results are evaluated

according to three error criteria namely, the mean square error (MSE), the mean absolute

error (MAE) and the peak signal to noise ratio (PSNR). For most quality assessment

methods, the error criterion takes the form of a Minkowski norm [97] which is defined as

follows:

E({em,n}) =

(∑
m

∑
n

|em,n|β
) 1

β

(4.8)

where {em,n} is the error (difference) between the reference and de-noised image and β is

a constant exponent typically chosen to lie between 1 and 4 for image error metrics.

The goal of de-noising is starting from a noisy image to produce the best possible

estimate ỹ(m,n) of the original image y(m,n). The measure of success in de-noising

is usually an error measure E(ŷ(m,n), y(m,n)) between the original y(m,n) and the

estimate ŷ(m,n).

The mean square error (MSE) function is commonly used because it has a simple

mathematical structure that is easy to compute and it is differentiable implying that

a minimum can be sought. For a discrete image signal y(m,n) and its approximation

(estimate) ỹ(m,n) where m,n = 0, 1, . . . , N − 1 the MSE is defined as

MSE =
1

MN

M−1∑
m=0

N−1∑
n=0

(y(m,n) − ỹ(m,n))2 (4.9)

where y(m,n) and ỹ(m,n) represent the original image and the de-noised image respec-

tively. The criterion root mean squared error (RMSE) is the square root of MSE, that

means for RMSE β = 2 (Eq. (4.8)).

Another most common and simplest measures of image quality, is the the peak signal

to noise ratio (PSNR) which is given by:

PSNR = 10 log10

(
I2
max

MSE

)
(4.10)

where Imax is the maximum intensity value, typical PSNR values range between 20 and

40. They are usually reported to two decimal points (e.g. 25.47). An improvement in of

the PSNR magnitude will increase the visual appearance of the image. PSNR is typically

expressed in decibels (dB). For comparison with the noisy image the greater the ratio, the
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easier it is to identify and subsequently isolate and eliminate the source of noise. A PSNR

of zero indicates that the desired signal is virtually indistinguishable from the unwanted

noise. PSNR is a good measure for comparing restoration results for the same image, but

between-image comparisons of PSNR are meaningless. One image with 20 dB PSNR may

look much better than another image with 30 dB PSNR.

Another criterion measure include: Mean of absolute error (MAE) which is given by

the Eq. (4.11)

MAE =
1

MN

M−1∑
m=0

N−1∑
n=0

|y(m,n) − ŷ(m,n)| (4.11)

The goal of de-noising is to find an estimate image such that MAE is minimum. Other

error measures such as the maximum of absolute error (MAX) and median of absolute

error (MED) can all be derived from Eq. (4.8). The proposed error criteria described

above can also be extended to three-dimensional image data and computed likewise.

4.2 Experimental Results

For our test experiments we have considered an additive noise with a uniform distri-

bution which has been used to corrupt our simulated and real MR test image objects.

Artificially adding noise to an image allows us to test and assess the performance of

various wavelet functions. To reduce computational time a region of interest is cropped

(extracted) for the de-noising (Fig. 4.5).

(a) ORIGINAL IMAGE (b) MR SUBIMAGE

FIGURE 4.5. (a) Original MR image slice and (b) the chosen subimage for the de-noising
application
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Algorithm Implementation: We used MATLAB to implement the de-noising algorithm.

Matlab has a wavelet toolbox and functions which are very convenient to do the DWT.

A usual way to de-noise is to find a processed image such that it minimizes mean square

error MSE, MAE and increases the value of the PSNR.

4.2.1 Results from Simulated Realistic Data - 2-D

A different number of wavelets have been chosen and are applied both for one-level

and two-level decomposition. The original and the noisy simulated images are shown in

Fig. 4.6.

 (a) ORIGINAL IMAGE  (b) NOISY IMAGE

FIGURE 4.6. (a) Original image and (b) noisy image

For comparison of the five different wavelet functions, the quantitative de-noising results

of the simulated images obtained by using global, level-dependent and optimal threshold-

ing are shown in Tabs. 4.1, 4.2 and 4.3 respectively. The MSE, MAE, PSNR error criteria

are the ones which have been used to assess the performance of the wavelet functions.

Their numerical results are summarized in the tables.

The threshold values shown in red are obtained using global (Fig. 4.7), level-dependent

(Fig. 4.8) and optimum thresholding (Fig. 4.9) for each decomposition level, which gave

us good noise suppression.

The visual quality of the de-noised images obtained by using various wavelet functions

at different levels are shown in Figs. 4.10 and 4.11. From the comparison results it can be

observed, that the db4 wavelet decomposition gives greatly improved de-noising results.
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TABLE 4.1. Qualitative analysis (SIMULATED image) - Global thresholding

Level 1 Level 2
Type of wavelet MSE MAE PSNR [dB] MSE MAE PSNR [dB]

Noisy image 0.01076 0.51493 19.68 0.01076 0.51493 19.68

Haar 0.00387 0.05231 24.12 0.01055 0.08362 19.77
db2 0.00116 0.02493 29.35 0.00320 0.04206 24.96
db4 0.00059 0.01914 32.28 0.00067 0.01795 31.71

sym2 0.00116 0.02493 29.35 0.00320 0.04206 24.96
sym4 0.00071 0.01884 31.46 0.00076 0.01667 31.22

bior1.1 0.00387 0.05231 24.12 0.01055 0.08362 19.77
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 (d) SCALING AND WAVELET COEFFICIENTS − GLOBAL THRESHOLDING

2,0 2,1 2,2 2,3 1,1 1,2 1,3

 (a) NOISY IMAGE  (b) IMAGE DECOMPOSITION  (c) IMAGE RECONSTRUCTION

FIGURE 4.7. Discrete wavelet transform of the (a) noisy image using a db4 wavelet function,
(b) the approximation image (low-frequency component) is in the top-left corner of the trans-
form display, the other subimages contain the high frequency details, (d) global thresholding
of the subband coefficients, and (c) shows the de-noised image, obtained by taking the inverse
thresholded coefficients
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TABLE 4.2. Qualitative analysis (SIMULATED image) - Level-dependent thresh-

olding

Level 1 Level 2
Type of wavelet MSE MAE PSNR [dB] MSE MAE PSNR [dB]

Noisy image 0.01076 0.51493 19.68 0.01076 0.51493 19.68

Haar 0.00389 0.05242 24.11 0.01293 0.09437 18.89
db2 0.00116 0.02492 29.35 0.00320 0.04209 24.95
db4 0.00059 0.01910 32.32 0.00059 0.01733 32.28

sym2 0.00116 0.02492 29.35 0.00320 0.04209 24.95
sym4 0.00071 0.01879 31.46 0.00071 0.01630 31.46

bior1.1 0.00389 0.05242 24.11 0.01293 0.09437 18.89
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 (d) SCALING AND WAVELET COEFFICIENTS − LEVEL DEPENDENT THRESHOLDING

2,0 2,1 2,2 2,3 1,1 1,2 1,3

 (a) NOISY IMAGE  (b) IMAGE DECOMPOSITION  (c) IMAGE RECONSTRUCTION

FIGURE 4.8. Image de-noising of (a) noisy image using a db4 wavelet function, (b) the de-
composed image showing the approximation image (top-left corner) and the high frequency
subimages details, (d) level dependent thresholding of the subband coefficients, and (c) the
de-noised image
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TABLE 4.3. Qualitative analysis (SIMULATED image) - Optimal thresholding

Level 1 Level 2
Type of wavelet MSE MAE PSNR [dB] MSE MAE PSNR [dB]

Noisy image 0.01076 0.51493 19.68 0.01076 0.51493 19.68

Haar 0.00376 0.05067 24.25 0.00513 0.05670 22.90
db2 0.00116 0.02492 29.35 0.00265 0.03912 25.76
db4 0.00059 0.01909 32.33 0.00063 0.01781 32.00

sym2 0.00116 0.02492 29.35 0.00265 0.03912 25.76
sym4 0.00071 0.01881 31.47 0.00074 0.01677 31.31

bior1.1 0.00376 0.05067 24.25 0.00513 0.05670 22.90
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 (a) NOISY IMAGE  (b) IMAGE DECOMPOSITION  (c) IMAGE RECONSTRUCTION

FIGURE 4.9. Discrete wavelet transform of the (a) noisy simulated image using a db4 wavelet
function, (b) the decomposed image, (d) optimal thresholding showing the optimum threshold
which minimizes the MSE, and (c) the de-noised simulated image
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 (a) db1 (PSNR = 25.3548)  (b) db2 (PSNR = 33.6642)  (c) db4 (PSNR = 39.3384)

 (d) sym2 (PSNR = 33.6642)  (e) sym4 (PSNR = 38.1524)  (f) bior1.1 (PSNR = 25.3548)

FIGURE 4.10. De-noised simulated images using different types of wavelets - level 1

 (a) db1 (PSNR = 22.021)  (b) db2 (PSNR = 26.3073)  (c) db4 (PSNR = 31.8713)

 (d) sym2 (PSNR = 26.3073)  (e) sym4 (PSNR = 32.0892)  (f) bior1.1 (PSNR = 22.021)

FIGURE 4.11. De-noised images using different types of wavelets - level 2
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4.2.2 Results from Real MRI Data - 2-D

We have done simulations with uniform random noise added to the MR image. An

example of a noisy magnetic resonance image (MRI) which consists of 128 × 128 pixels

is shown in Fig. 4.12. As can be seen in the background the image has been uniformly

corrupted with additive noise. The de-noising techniques discussed in the previous section

are applied to the noisy MR image to test the efficiency of the different threshold methods.

 (a) ORIGINAL IMAGE  (b) NOISY IMAGE

FIGURE 4.12. (a) Original image and (b) noisy image

Comparison of de-noising results for a various set of wavelets for the 128 × 128 MR

image, corrupted with additive uniform random noise are shown in Tabs. 4.4, 4.5 and 4.6.

The MSE and PSNR values from the experimental results show that db4 wavelet yields

significantly improved visual quality as well as lower mean square error (MSE) and higher

PSNR value compared to other wavelet functions. The simplest Haar wavelet produces

the worst results as evidenced by the higher MSE, lower PSNR values and poor visual

quality (Fig. 4.17(a)), thus it’s not effective in removing noise.

Figs. 4.16 and 4.17 show the result of performing the de-noising algorithm with different

types of wavelets, both for one and two levels of decomposition using the global tresholding

method. Note the reduction in noise in the image Fig. 4.16(c) which was obtained by the

db4 wavelet. It can also be seen that the background noise has been eliminated and the

edge details are preserved.
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TABLE 4.4. Qualitative analysis (MRI image) - Global thresholding

Level 1 Level 2
Type of wavelet MSE MAE PSNR [dB] MSE MAE PSNR [dB]

Noisy image 0.00472 0.29805 23.26 0.00472 0.29805 23.26

Haar 0.00169 0.03245 27.71 0.00157 0.02975 28.04
db2 0.00126 0.02702 28.99 0.00135 0.02789 28.69
db4 0.00089 0.02353 30.52 0.00115 0.02565 29.39

sym2 0.00126 0.02702 28.99 0.00135 0.02789 28.69
sym4 0.00092 0.02334 30.36 0.00119 0.02600 29.24

bior1.1 0.00169 0.03245 27.71 0.00157 0.02975 28.04
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 (d) SCALING AND WAVELET COEFFICIENTS − GLOBAL THRESHOLDING

2,0 2,1 2,2 2,3 1,1 1,2 1,3

 (a) NOISY IMAGE  (b) IMAGE DECOMPOSITION  (c) IMAGE RECONSTRUCTION

FIGURE 4.13. The 2-D image decomposition of the (a) noisy MR image using a db4 wavelet
function, (b) the approximation image (low-frequency component) is in the top-left corner of the
transform display, the other subimages contain the high frequency details, (d) global thresholding
of the subband coefficients, and (c) shows the resulting de-noised MR image.
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TABLE 4.5. Qualitative analysis (MRI image) - Level-dependent thresholding

Level 1 Level 2
Type of wavelet MSE MAE PSNR [dB] MSE MAE PSNR [dB]

Noisy image 0.00472 0.29805 23.26 0.00472 0.29805 23.26

Haar 0.00169 0.03244 27.72 0.00158 0.02979 28.02
db2 0.00126 0.02700 29.01 0.00135 0.02785 28.70
db4 0.00088 0.02347 30.55 0.00113 0.02552 29.45

sym2 0.00126 0.02700 29.01 0.00135 0.02785 28.70
sym4 0.00092 0.02329 30.39 0.00119 0.02594 29.26

bior1.1 0.00169 0.03244 27.72 0.00158 0.02979 28.02
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 (d) SCALING AND WAVELET COEFFICIENTS − LEVEL DEPENDENT THRESHOLDING

2,0 2,1 2,2 2,3 1,1 1,2 1,3

 (a) NOISY IMAGE  (b) IMAGE DECOMPOSITION  (c) IMAGE RECONSTRUCTION

FIGURE 4.14. Discrete wavelet transform of the (a) noisy MR image using a db4 wavelet func-
tion, (b) two-level image decomposition, (d) level dependent thresholding of the subband co-
efficients, and (c) the resulting de-noised image, obtained by taking the inverse thresholded
coefficients.
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TABLE 4.6. Qualitative analysis (MRI image) - Optimal thresholding

Level 1 Level 2
Type of wavelet MSE MAE PSNR [dB] MSE MAE PSNR [dB]

Noisy image 0.00472 0.29805 23.26 0.00472 0.29805 23.26

Haar 0.00169 0.03244 27.72 0.00156 0.02972 28.07
db2 0.00126 0.02700 29.01 0.00135 0.02790 28.69
db4 0.00088 0.02347 30.55 0.00115 0.02568 29.39

sym2 0.00126 0.02700 29.01 0.00135 0.02790 28.69
sym4 0.00092 0.02329 30.39 0.00119 0.02595 29.25

bior1.1 0.00169 0.03244 27.72 0.00156 0.02972 28.07
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 (a) NOISY IMAGE  (b) IMAGE DECOMPOSITION  (c) IMAGE RECONSTRUCTION

FIGURE 4.15. Discrete wavelet transform of the (a) noisy MR image using a db4 wavelet func-
tion, (b) the decomposed image showing the approximation image and the detail subband subim-
ages, (d) optimal thresholding showing the optimum threshold which minimizes the MSE, and
(c) shows the de-noised MR image.
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 (a) db1 (PSNR = 31.2175)  (b) db2 (PSNR = 32.8149)  (c) db4 (PSNR = 33.8168)

 (d) sym2 (PSNR = 32.8149)  (e) sym4 (PSNR = 33.8131)  (f) bior1.1 (PSNR = 31.2175)

FIGURE 4.16. De-noised MR images using different types of wavelets for a one level decompo-
sition

 (a) db1 (PSNR = 28.5477)  (b) db2 (PSNR = 29.6092)  (c) db4 (PSNR = 30.2766)

 (d) sym2 (PSNR = 29.6092)  (e) sym4 (PSNR = 30.2731)  (f) bior1.1 (PSNR = 28.5477)

FIGURE 4.17. De-noised MR images using different types of wavelets for a two level decompo-
sition
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4.2.3 Results from Simulated Realistic Data - 3-D

The de-noising algorithm was applied to simulated image volume corrupted with ran-

domly distributed noise generated using the MATLAB rand function. The effectiveness of

different wavelet functions are compared using the mean square error (MSE), signal-noise-

ratio (SNR) and visual criteria. The simulated volume consists of a number of 64× 64× 8

three-dimensional data.

FIGURE 4.18. (a) Original and (b) noisy simulated image volume

The 3-D discrete wavelet transform has been used to de-noise the noisy volume. Fig. 4.19

shows a plot of the coefficients of a one level of the transform. The horizontal lines shown

in the graph are the soft thresholding levels of 0.5. The effect of this thresholding will set

all the values in the filtered signal that have an absolute value less than 0.5 to zero and

rescales other coefficients. Applying the given threshold level and taking the inverse of

the result a de-noised volume is obtained as shown in Fig. 4.19(c).

FIGURE 4.19. 3-D DWT of the (a) noisy simulated image volume using a db4 wavelet function,
(b) the decomposed image subband volumes, (d) global thresholding of the wavelet coefficients,
and (c) the resulting de-noised image image volume
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4.2.4 Results from Real MRI Data - 3-D

The de-noising algorithm was applied to an MRI sub-volume corrupted with randomly

distributed noise. Results from different wavelets are compared using the mean square

error (MSE), peak signal-noise-ratio (PSNR) and visual criteria. The MSE is computed

relative to the original image volume i.e. it measures the difference between the values

of the corresponding pixels from the two volumes. Fig. 4.20 shows the original MR sub-

volume and the noisy volume.

FIGURE 4.20. (a) Original and (b) noisy MR image volume

We applied 3-D wavelet transform algorithm to an MRI scan of a human brain (128

x 128 x 16). Fig. 4.21 shows a one level decomposition of the 3-D volume obtained by

using the db4 wavelet. The ability of the discrete wavelet transform to reduce distortion in

the reconstructed volume while retaining all the significant features present in the image

volume is seen in Fig. 4.21(c).

FIGURE 4.21. Three-dimensional decomposition of (a) noisy MR image volume, (b) one-level
image volume decomposition, (d) wavelet coefficients of different subbands (the thresholded
values are the ones in red), and (c) the reconstructed model
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The proposed 3-D discrete wavelet de-noising algorithm has been evaluated on the

noisy MR volume, by visual inspection and by computing quantitative measures of the

similarity between the reference image and the de-noised image. The performance of

different wavelets is compared by computing the error criteria mean square error, mean

absolute error and the peak signal-to-noise ratio of the noisy image and the de-noised

image. Tables 4.7, 4.8 and 4.9 show the numerical results after the implementation of

the global, level-dependent and optimal thresholding respectively. In all the cases the db4

wavelet outperforms other wavelets as can be seen from their increase of the PSNR values.

TABLE 4.7. Qualitative analysis (MRI image volume) - Global thresholding

Level 1
Type of wavelet MSE MAE PSNR [dB]

Noisy image 0.01479 0.10096 18.30

Haar 0.00278 0.04145 25.56
db2 0.00322 0.04388 24.92
db4 0.00216 0.03654 26.66

sym2 0.00322 0.04388 24.92
sym4 0.00294 0.04144 25.32

bior1.1 0.00278 0.04145 25.56

TABLE 4.8. Qualitative analysis (MRI image volume) - Level-dep. thresholding

Level 1
Type of wavelet MSE MAE PSNR [dB]

Noisy image 0.01479 0.10096 18.30

Haar 0.00279 0.04149 25.55
db2 0.00324 0.04397 24.89
db4 0.00216 0.03655 26.65

sym2 0.00324 0.04397 24.89
sym4 0.00294 0.04148 25.31

bior1.1 0.00279 0.04149 25.55

TABLE 4.9. Qualitative analysis (MRI image volume) - Optimal thresholding

Level 1
Type of wavelet MSE MAE PSNR [dB]

Noisy image 0.01479 0.10096 18.30

Haar 0.00277 0.04137 25.58
db2 0.00306 0.04329 25.14
db4 0.00216 0.03651 26.66

sym2 0.00306 0.04329 25.14
sym4 0.00280 0.04111 25.53

bior1.1 0.00277 0.04137 25.58
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4.3 Discussions and Conclusions

The de-noising process consists of decomposing the image, thresholding the detail co-

efficients, and reconstructing the image. The decomposition procedure of the de-noising

example is accomplished by using the DWT. Wavelet thresholding is an effective way of

de-noising as shown by the experimental results obtained with the use of different types of

wavelets. Thresholding methods implemented comprised of the universal global threshold-

ing, level (subband) thresholding and optimal thresholding. More levels of decomposition

can be performed, the more the levels chosen to decompose an image or volume, the

more detail coefficients we get. But for de-noising the noisy MR data sets, a two-level

decomposition provided sufficient noise reduction.

In this chapter we have presented the generalization of the DWT method from the

2-D to the 3-D case. The resulting algorithms have been used for the processing of noisy

MR image volumes. Experimental results have shown that despite the simplicity of the

proposed de-noised algorithm it yields significantly better results both in terms of visual

quality and mean square error values. Considering the simplicity of the proposed method,

we believe these results are very encouraging for other forms of de-noising. The fourth-

order Daubechies wavelet (db4) gave the best results compared to other wavelets and the

simple Haar wavelet produces the worst results. However, the Haar wavelet is a useful and

simple wavelet which is normally used for demonstrating purposes of the discrete wavelet

transform. DWT using a db4 produces sharper edges and retains more detail, providing a

closer resemblance to the original than the other wavelets.

The noise assumption used in Donoho’s ([24, 23]) derivation fails when images are

not contaminated with additive noise (uniform random noise, gaussian noise). Nonlinear

image processing techniques are required to remove multiplicative noise whereas linear

spatial filtering methods (DWT) are used to remove additive noise. If for example we

don’t have a reference image it is possible to take the average of multiple images of the

same image at the same noise level and this form is also useful for removing noise.

Finally, a great advantage of the wavelet transform is that often a large number of the

detail coefficients turns out to be very small in magnitude, truncating (removing) these

small coefficients from the representation introduces only small errors in the reconstructed

image, giving an image which closely resembles the original image and also preserving edge

features.
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5

Dual Tree Complex Wavelet Transform

Different wavelet techniques can be successfully applied in various signal and image

processing methods, namely in image de-noising, segmentation, classification and motion

estimation. The chapter discusses the application of dual tree complex wavelet transform

(DT CWT) which has significant advantages over real wavelet transform for certain signal

processing problems. The transform was proposed by Dr. Nick Kingsbury of Cambridge

University. He has written various papers in line to this topic providing a solid math-

ematical background that allows practical use of complex wavelets in image processing

[45, 44, 46, 43]. The DT CWT can be used for a variety of applications such as de-noising,

edge detection, image restoration, enhancement, and image compression.

DT CWT is a form of discrete wavelet transform, which generates complex coefficients

by using a dual tree of wavelet filters to obtain their real and imaginary parts. What makes

the complex wavelet basis exceptionally useful for de-noising purposes is that it provides

a high degree of shift-invariance and better directionality compared to the real DWT.

The main part of the chapter is mainly focussed on the theoretical analysis of complex

wavelet transform. The resulting wavelet algorithm is then applied to the analysis and

de-noising of magnetic resonance (MR) biomedical images. In this chapter we will also

explore the performance of these enhanced transforms in MRI data analysis and show

that these algorithms can powerfully enhance the PSNR in noisy MRI data sets.

5.1 Complex Wavelet Transform

Complex wavelets have not been used widely in image processing due to the difficulty

in designing complex filters which satisfy a perfect reconstruction property. To overcome

this Dr. Kingsbury [44] proposed a dual-tree implementation of the CWT which uses

two trees of real filters to generate the real and imaginary parts of the wavelet coefficients

separately. The two trees are shown in Fig. 5.1 for 1-D signals, complex wavelet coefficients

are estimated by dual tree algorithm and their magnitude is shift invariant. Even though

the outputs of each tree are downsampled by summing the outputs of the two trees during

reconstruction we are able to suppress the aliased components of the signal and achieve

approximate shift invariance.
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5.2 1-D Complex Wavelet Transform

The 1-D dual-tree wavelet transform [39] is implemented using a pair of filter banks

operating on the same data simultaneously. The upper iterated filter bank represents the

real part of a complex wavelet transform. The lower one represents the imaginary part.

The transform is an expansive (or oversampled) transform. The transform is two times

expansive because for an N -point signal it gives 2N DWT coefficients. When designed in

this way the DT CWT is nearly shift invariant, in contrast to the classic DWT.

The structure of a resulting analysis filter bank is sketched in Fig. 5.1, where index a

stands for the original filter bank and the index b is for the additional one. The dual-tree

complex wavelet transform of a signal x(n) is implemented using two critically-sampled

DWT in parallel on the same data.
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 Tree a
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FIGURE 5.1. The 1-D dual-tree wavelet transform is implemented with a pair of filter banks
operating on the same data simultaneously.

In the thesis a dual-tree CWT using a length-10 filters [46] is used, the table of co-

efficients of the analysing filters in the first stage (Tab. 5.1) and the remaining levels

(Tab. 5.2) are shown. The coefficients of the synthesis filters are simply the transposes of

the analysis filters (orthogonal filters). The complex wavelet associated with the dual tree

CWT is shown in Fig. 5.2. The impulse responses of these then look very like the real and

imaginary parts of the complex wavelets.
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TABLE 5.1. First level coefficients of the analysis filters

Tree a Tree b
H0a H1a H0b H1b

0 0 0.01122679 0
-0.08838834 -0.01122679 0.01122679 0
0.08838834 0.01122679 -0.08838834 -0.08838834
0.69587998 0.08838834 0.08838834 -0.08838834
0.69587998 0.08838834 0.69587998 0.69587998
0.08838834 -0.69587998 0.69587998 -0.69587998
-0.08838834 0.69587998 0.08838834 0.08838834
0.01122679 -0.08838834 -0.08838834 0.08838834
0.01122679 -0.08838834 0 0.01122679

0 0 0 -0.01122679

TABLE 5.2. Remaining levels coefficients of the analysis filters

Tree a Tree b
H00a H01a H00b H01b

0.03516384 0 0 -0.03516384
0 0 0 0

-0.08832942 -0.11430184 -0.11430184 0.08832942
0.23389032 0 0 0.23389032
0.76027237 0.58751830 0.58751830 -0.76027237
0.58751830 -0.76027237 0.76027237 0.58751830

0 0.23389032 0.23389032 0
-0.11430184 0.08832942 -0.08832942 -0.11430184

0 0 0 0
0 -0.03516384 0.03516384 0

The approximations and details for the two trees are denoted respectively (aA, dA) and

(aB, dB). The details dA and dB can be interpreted as the real and imaginary parts of

a complex process z = dA + idB. The essential property of this transform is that the

magnitude of the step response is approximately invariant with the input shift [45]. If

we only consider the magnitude |z| for a given scale, it corresponds to an approximately

shift invariant transform, and thresholding this magnitude produces less artifacts than

thresholding real transforms. DT CWT is not really a complex wavelet transform, since it

does not use any complex wavelet instead it is implemented with real wavelet filters. The

reconstruction is done in each tree independently, by using the dual filters, the results are

averaged to obtain x(n) and to ensure the symmetry between the trees, thus producing

the desired shift invariance.
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FIGURE 5.2. A complex wavelet associated with the real and imaginary wavelets for 1-D DT
DWT

Translation Invariance by Parallel Filter Banks

The orthogonal [63] two-channel filter bank with analysis low-pass filter given by the

z-transform H0(z) =
∑

k∈Z h0(k)z−k, analysis highpass filter H1(z) =
∑

k∈Z h1(k)z−k and

with synthesis filters G0(z) = H0(z
−1) and G1(z) = H1(z

−1) is shown by the diagram in

Fig. 5.3.

2

2

2

2

)(0 zH

)(1 zH

)(zX )(zY+

)(0 zG

)(1 zG

)(1 zX l

)(1 zXh

1D
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FIGURE 5.3. One level signal wavelet decomposition and reconstruction

For an input signal X(z), the analysis part of the filter bank inclusive subsequent

upsampling produces the low-pass and the high-pass coefficients respectively,

C1(z2) =
1

2
{X(z)H0(z) + X(−z)H0(−z)} (5.1)
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D1(z2) =
1

2
{X(z)H1(z) + X(−z)H1(−z)} (5.2)

and decomposes the input signal into a low frequency part X1
l (z) and a high frequency

part X1
h(z) in the form

X(z) = X1
l (z) + X1

h(z)

where

X1
l (z) = C1(z2)G0(z) =

1

2
{X(z)H0(z)G0(z) + X(−z)H0(−z)G0(z)} (5.3)

X1
h(z) = D1(z2)G1(z) =

1

2
{X(z)H1(z)G1(z) + X(−z)H1(−z)G1(z)} (5.4)

However this decomposition is not shift invariant due to the X(−z) terms in Eq. (5.3)

and Eq. (5.4), which are aliasing terms introduced by the downsampling and upsampling

operations. For a single shift of the input signal z−1S(z) and the implementation of the

filter bank we have

z−1X(z) = X̃1
l (z) + X̃1

h(z)

where

X̃1
l (z) = C1(z2)G0(z) (5.5)

and similarly for the high-pass part. For an input signal z−1X(z) we have

C1(z2) =
1

2
{z−1X(z)H0(z) + (−z)−1X(−z)H0(−z)} (5.6)

and

X̃1
l (z) =

1

2
z−1{X(z)H0(z)G0(z) − X(−z)H0(−z)G0(z)} �= z−1X1

l (z) (5.7)

which of course is not the same as z−1X1
l (z) if we substitute for z−1 in Eq. (5.3). From

this calculation one can see that the shift dependence is caused by the terms containing

X(−z), the so called aliasing terms.

One possibility to obtain a shift invariant decomposition consists of applying an addi-

tional filter bank with shifted analysis filters z−1H0(z) and z−1H1(z) that is for synthesis

filters ( zG0(z) and zG1(z) ) and averaging the low and the highpass channels of both

filter banks.

If we label the first filter bank by an index a and the second one by an index b then

this procedure implies the decomposition

X(z) = X1
l (z) + X1

h(z)
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FIGURE 5.4. One level complex dual tree

where

X1
l (z) =

1

2
{C1

a(z2)G0a(z
−1) + C1

b (z2)G0b(z
−1)}

=
1

4
{[X(z)H0(z) + X(−z)H0(−z)]G0(z)

+ [X(z)z−1H0(z) + X(−z)(−z)−1H0(−z)]zG0(z)}
=

1

4
{X(z)H0(z)G0(z) + X(−z)H0(−z)G0(z)

+ z−1.z(X(z)H0(z)G0(z) − X(−z)H0(−z)G0(z))}
=

1

4
{X(z)[H0(z)G0(z) + H0(z)G0(z)] + X(−z)[H0(−z)G0(z) − H0(−z)G0(z)]}

=
1

4
{X(z)(H0(z)G0(z) + H0(z)G0(z))}

=
1

2
X(z)H0(z)H0(z

−1)

(5.8)

and similarly for the high-pass part. The aliasing term containing X(−z) in X1
l has dis-

appeared and the decomposition becomes indeed shift invariant. Using the same principle

for the design of shift invariant filter decomposition, Dr. Kingsbury suggested in [44] to

apply a dual-tree of two parallel filter banks and combine their bandpass outputs. The

structure of a resulting analysis filter bank is sketched in Fig. 5.1, where index a stands

for the original filter bank and the index b is for the additional one. The dual-tree complex

DWT of a signal x(n) is implemented using two critically-sampled DWTs in parallel on

the same data.
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The DT CWT is less sensitive to signal shift than the DWT [27]. To illustrate this

fact Fig. 5.5(a) shows the the original input signal and the subband coefficients at first

and second level. On shifting this signal by one sample Fig. 5.5(b) is obtained. From

these figures the difference between the subband coefficients before and after shifting

is clearly seen in contrast to the DT CWT (Fig. 5.6) where the shape of the subband

coefficients remains the same. This shows that the DWT is shift sensitive because DWT

coefficients behave unpredictably under signal shifts. Indeed this shift invariance problem

is a big disadvantage that makes the DWT not suitable for other several signal processing

applications.
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FIGURE 5.5. Shift sensitivity of the discrete wavelet transform - magnitude of the first and
second level subband coefficients (a) original signal and (b) shifted one sample to the right

A transform is shiftable if the coefficient energy in each transform subband is conserved

under input-signal shifts. Thus shiftability is very important for certain applications be-

cause it guarantees that the information in a transform subband is confined within that

subband even when the input signal is shifted in position.

The necessary and sufficient condition for shiftability is that each of the subband en-

ergy is constant for any signal shifts. To prove that the DT CWT is shift invariance we
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FIGURE 5.6. Shift sensitivity of the dual tree CWT - magnitude of the first and second level
subband coefficients (a) original signal and (b) shifted one sample to the right

must show that its subband energy is approximately constant under input signal shifts.

Fig. 5.5(a) and Fig. 5.6(a) show the original input signal on which a two level DWT and

CWT has been applied. Then for both transforms the subband energy over circular shifts

of the input signal is computed. From Fig. 5.7 it can be observed that there are large

oscillations in the DWT subband energies in contrast to the DT CWT subband energy

that remains approximately constant over input-signal shifts. This also gives the proof of

the approximate shift invariance for the DT CWT.
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FIGURE 5.7. Subband energy for the DWT and DT CWT methods
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5.3 2-D Dual-Tree Wavelet Transform

To extend the transform to higher-dimensional signals, a filter bank is usually applied

separably in all dimensions. To compute the 2-D DT CWT of images the pair of trees

are applied to the rows and then the columns of the image as in the basic DWT. This

operation results in six complex high-pass subbands at each level and two complex low-

pass subbands on which subsequent stages iterate in contrast to three real high-pass

and one real low-pass subband for the real 2D transform. This shows that the complex

transform has a coefficient redundancy of 4:1 or 2m : 1 in m dimensions. The price for

high redundancy is a reasonable tradeoff for a shift-invariant, multiresolution transform.

The overall redundancy of the 2-D DT CWT is 4:1, i.e. 4 real numbers are produced for

every input pixel, regardless of how many levels are computed.
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FIGURE 5.8. 2D dual tree CWT, each I-D convolution is followed by a 1-D downsampling of 2.

We implement the 2-D DWT [43] separably so that only 1D convolutions and downsam-

pling are required. This results in three bandpass subimages and one lowpass subimage,

on which the basic block is iterated. Fig. 5.8 shows a complete structure over 2 levels. The

real 2-D dual-tree CWT of an image x(n) is implemented using two critically-sampled



72 5. Dual Tree Complex Wavelet Transform

separable 2-D DWT in parallel. Then for each pair of subbands we take the sum and

difference. Each level of the tree produces 6 bandpass subimages as well as two lowpass

subimages, on which subsequent stages iterate. In case of real 2-D filter banks the three

highpass subbands have orientations of 00, 450 and 900 compared to the complex filters

which have six high-pass subbands at each level which are oriented at ±150,±450,±750

(Fig. 5.9).

 (a) DISC IMAGE

 (b) DWT

900 00 ± 450

 (c) DT CWT

150 750 −450

−150 −750 450

FIGURE 5.9. Complex filter response showing the orientations of the complex wavelets (a)
original disc image, (b) DWT has three orientations of 00, 450, 900, and (c) DT CWT has six
directions oriented at ±150,±450,±750

The shift invariance of 2D DT CWT is illustrated in Fig. 5.10, shown are the contribu-

tions of the different levels for a circular disk image. Reconstructed images are obtained

from the respective details coefficients of the different levels of the DWT and DT CWT.

The classical wavelet transform shows aliasing compared to the DT CWT with images

which look better and almost free of the aliasing effect.
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 (a) DWT

 (b) DT CWT

Details: Level 1 Level 2 Level 3 Level 4 Level 4: Approx. image

FIGURE 5.10. Comparison of the shift invariance for (a) DWT and (b) DT CWT

Fig. 5.11 illustrates the decomposition of the MR subimage both in the DT CWT and

the DWT domain. For each decomposition only two levels are shown and the orientation

of the corresponding filter is shown in the corner of each subband. From these figures it

is clearly evident that the DT CWT [52] can distinguish the direction in many different

orientations compared to the DWT.

 (a) ORIGINAL IMAGE  (b) DWT DECOMPOSITION − 2 LEVELS

900

± 45000

 (c) DT CWT IMAGE DECOMPOSITION − 2 LEVELS

−750

−450 −150 150 450

750

FIGURE 5.11. Two level decomposition of the (a) original MR image in both, (b) the DWT,
and (c) DT CWT domain
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5.4 Experimental Results

The shift invariance and directionality of the DT CWT may be applied in many areas

of image processing like de-noising, feature extraction, object segmentation and image

classification. Here we shall consider the de-noising application. For de-noising a soft

thresholding and hard thresholding methods are used. The choice of threshold limits λ

for each decomposition level and modification of the coefficients is defined by Eq. (5.9).

cs(k)=

{
sign c(k)(|c(k) | −λ) if |c(k) |> λ
0 if |c(k) |≤ λ

(5.9)

To compare the efficiency of the DT CWT with the classical DWT the quantitative MSE,

MAE and PSNR are used. In both cases the optimal thresholds points λ were selected to

give the minimum square error from the original image.

 (a) ORIGINAL IMAGE  (b) NOISY IMAGE

 (c) DE−NOISED IMAGE − DWT  (d) DE−NOISED IMAGE − DT CWT

FIGURE 5.12. MR image scan: (a) original image, (b) with random noise added, (c) de-noised
with DWT, and (d) de-noised with dual tree CWT
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From Fig. 5.12(c) it may be seen that DWT introduces prominent worse artifacts, while

the DT CWT provides a qualitatively restoration with a better optimal minimum MSE

error (Fig. 5.14).
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FIGURE 5.13. Optimal threshold values for the DWT and DT CWT methods obtained by using
the soft thresholding algorithm

De-noising results obtained after implementing the hard threshold algorithm to both

DWT and DT CWT methods are shown in Fig. 5.14. From the de-noised images it can be

seen that the complex wavelet transform performs even better than the classical wavelet

transform. The optimum MSE curves for the respective methods are shown in Fig. 5.15.

 (a) DE−NOISED IMAGE − DWT  (b) DE−NOISED IMAGE − DT CWT

FIGURE 5.14. Noisy MR image (a) de-noised with DWT and (b) de-noised with DT CWT
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FIGURE 5.15. Optimal MSE curves for the DWT and DT CWT methods

5.5 Discussion

In this chapter, we introduced a dual-tree complex wavelet transform with approximate

shift invariance, good directional selectivity, perfect reconstruction, limited redundancy

and efficient computation. These properties are important for many applications in image

processing including de-noising, deblurring, segmentation and classification. An appli-

cation method based on DT CWT was carried out for the de-noising of MR images.

Experimental results show a great effectiveness of the DT CWT in removing the noise

compared to the classical DWT as shown in Tab. 5.3 by the increase of the PSNR value

and the reduction of the MSE.

TABLE 5.3. Comparison of the 2-D DWT and the 2-D DT CWT de-noising methods

Hard thresholding Soft thresholding
Type of method MSE MAE PSNR [dB] MSE MAE PSNR [dB]

Noisy image 0.0025 0.0399 25.99 0.0025 0.0399 25.99

DWT 0.0011 0.0257 29.61 0.0009 0.0235 30.46
DT CWT 0.0009 0.0241 30.29 0.0008 0.0226 30.81
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6

Image Segmentation and Feature Extraction

During the last three decades computerized segmentation techniques [36] have been

studied extensively among numerous scientific fields including, e.g., pattern recognition,

computer vision systems, and medical imaging. Segmentation is a technique that is used to

find the objects of interest. Segmentation subdivides an image into its constituent regions

or objects and it is an important step toward the analysis phase. It allows quantification

and visualization of the objects of interest.

In the analysis of the objects in images it is essential that we can distinguish between

the objects of interest and the rest e.g. the background. The techniques that are used to

find the objects of interest are usually referred to as segmentation techniques - segmenting

the foreground from background. In this chapter we will present the watershed transform

which will be tested for the segmentation of the simulated image texture and MR image

of the knee. We will present techniques for improving the quality of the segmentation

result. The proposed segmentation technique uses a Vincent and Soilles immersion-based

watershed algorithm which is either applied to the original or gradient image.

6.1 Image Segmentation

Segmentation appears to be a key issue in modern medical image analysis enabling

numerous clinical applications. Segmentation is the process of assigning labels to pixels in

2-D images or voxels in 3-D images. The effect is that the image is split up into segments

also called as regions or areas. In medical imaging this is essential for quantification of

outlined structures and for 3-D visualization of relevant image data. For clinical purposes

segmentation techniques using MRI has been widely used in monitoring brain infarctions,

brain tumors. For example reliable 3-D images constructed from the segmented images

helps understand the relation between the lesions and surrounding normal brain structures

[17].

From a medical perspective [72], many researchers have noticed the importance of tex-

ture in MR and different research groups have been established. Texture will be more and

more important as the resolution of the magnetic resonance (MR) equipment increases.

The current resolution already allows the texture of bone and muscle to be easily seen
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e.g. the human knee. By further increasing the scanning resolution it will be possible to

reveal the texture of soft tissues in a similar way that microscopes reveal the texture of

bones, cartilages, tendons or the skin. It is therefore important to develop methods that

analyse textural information of MR images. However it must be noted that the textures

encountered in MR images are significantly different from synthetic (artificial) textures

which we will tend to be focussing on in this chapter.

Image-guided surgery is another important application of segmentation. Recent ad-

vances in technology have made it possible to acquire images of the patient while the

surgery is taking place. The goal is then to segment relevant regions of interest and over-

lay them on an image of the patient to help guide the surgeon in his work. Segmentation

is therefore a very important task in medical imaging. Different algorithms used include

watershed algorithm which is evaluated for tumor segmentation in MR brain images.

6.1.1 Watershed Transform

The concept of watersheds and catchment basins are well known in topography. A

watershed [31] is a ridge that divides areas drained by different river systems. A catchment

basin is the area draining into a river or reservoir. The watershed transform applies these

ideas to gray-scale image processing in a way that can be used to solve a variety of image

segmentation problems.

FIGURE 6.1. Watersheds and catchment basins

Using watershed transform a gray-scale image is taken as a topological surface where

the values of f(x, y) are interpreted as heights. By visualizing the image in Fig. 6.2 as

the three-dimensional surface it is easily seen that water would collect in the two areas

labelled as catchment basins. The watershed transform finds the catchment basins and

ridge lines in a gray-scale image. For image segmentation problems, the key concept is to

change the original image into another image whose catchment basins are the objects or

regions we want to identify.
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An efficient and accurate watershed algorithm was developed by Vincent and Soille [94]

who used an immersion based approach to calculate the watersheds. The operation of

their technique has been verified, the principle of proposed algorithm is simply described

in Algorithm 2:

Algorithm 2: Watershed by immersion

• Visualize the image f(x, y) as a topographic surface, with both

valleys and mountains.

• Assume that there is a hole in each minima and the surface is

immersed into a lake.

• The water will enter through the holes at the minima and flood the

surface.

• To avoid the water coming from two different minima to meet, a dam

is build whenever there would be a merge of the water.

• Finally, the only thing visible of the surface would be the dams.

These dam walls are called the watershed lines.

The procedure results in a partitioning of the image in many catchment basins of which

the borders define the watersheds. Of all the watershed transforms the immersion tech-

nique [33] was shown to be the most efficient one in terms of edge detection accuracy and

processing time or speed of computation. The algorithm is well explained in Chapter 10

of [30], it can be used directly on the image, on an edge enhanced image or on a distance

transformed image as we shall show in this section. So how are watersheds and catch-

ment basins related to analyzing biomedical images and what is the connection to image

processing? The connection is through computer analysis of objects in digital images. To

understand the watershed transform a grayscale image is represented as a topographic

surface (Fig. 6.2). For example, consider the image below:

catchment basins 

watershed line 

FIGURE 6.2. The blob and basin - a grayscale image and its representation as a topographic
surface.
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By imagining that bright areas are high and dark areas are low then the image look

like the surface in Fig. 6.2, thus the image is viewed in terms of catchment basins and

watershed lines. The key behind using the watershed transform for segmentation is to

first change the grayscale image to a binary image. Here we will show how watershed

segmentation is carried out on a binary image. As we shall see it is necessary to change

the image into another image whose catchment basins are the objects we want to identify.

 (a) BINARY IMAGE  (b) DISTANCE TRANSFORM OF ~BW

 (c) COMPLEMENT OF (b)  (d) RIDGE LINES

FIGURE 6.3. Segmenting a binary image - (a) Binary image of two touching objects, (b) Distance
transform map obtained for the binary image, (c) complement of the distance transformed image,
and (d) watershed segmentation performed using the distance map

Consider the task of separating the two touching objects in this binary image (Fig 6.3).

How can we modify this image so its catchment basins are two circular objects? To do

this we will use the distance transform [30]. The distance transform of a binary image is

the distance from every pixel to the nearest nonzero-valued pixel, as this example shows.

The distance transform of the complement of the binary image, looks like an image in

Fig. 6.3(b). This image however has two bright areas covering the whole images. However

we need to negate this image to turn the two bright areas into catchment basins (dark

areas). Now there is one catchment basin for each object and the background has also

been modified to be a catchment basin by setting its depth to infinite. (Appendix D)



6. Image Segmentation and Feature Extraction 81

6.1.2 Segmentation Results

Two different textural images are considered for the watershed segmentation. The pro-

posed watershed algorithm is tested both for artificial texture image and real MR knee

image. Segmentation of an artificial texture image which contains image objects of differ-

ent shapes is shown in Fig. 6.4.

 (a)  (b)

 (c)  (d)

FIGURE 6.4. Segmentation of (a) simulated image texture, (b) watershed lines, (c) binary image
of the selected object, and (d) segmented texture

The most interesting image is the human knee MRI in which three anatomical regions

of muscle, bone, tissue and the background of the image are to be segmented. Fig. 6.5

shows segmentation of bone from MR knee image.

The bone is distinguished from the tissue, the background and the muscle can also be

correctly segmented. For clinical application of image analysis, accurate determination of

object boundary is often required and such a task is not trivial due to the complexity of

biological objects. The watershed-based segmentation of the MR knee image presented

here might be useful for expert users to extract object boundary from medical images

reproducibly and accurately.
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 (a)  (b)

 (c)  (d)

FIGURE 6.5. Segmentation of the femur in an MR image of the knee. (a) MRI of the knee, (b)
watershed lines, (c) binary image of the selected object, and (d) segmented bone

Discussions

Watershed segmentation is sensitive to noise and it results in over-segmentation when

noise is present due to an increased number of local minima, such that many catchment

basins are subdivided. This is a limitation drawback of watershed segmentation. The

first pre-processing step concerns the reduction of random noise as segmentation results

are highly dependent on image noise. This is because noise tends to dislocate edges and

hampers the detection of fine image detail. The goal in the de-noising is to smooth out

the background regions in images while preserving features that represent object bound-

aries by using the discrete wavelet transform. Once the data has been smoothed, we can

compute the watershed transform. It is important to note that there is no universally

applicable segmentation technique that will work for all images and no segmentation

technique is perfect. In this section we have presented a watershed method for segmenta-

tion of simulated image texture and MR image of the knee. The results indicate that the

process of segmenting bone, tissue and muscles has been significantly improved.
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6.2 Wavelet-based Feature Extraction

The main aim of this section is to study the major problems of texture analysis, in-

cluding the classification of textures and propose solutions based on wavelet transform.

Texture analysis is used in a variety of applications, including remote sensing, automated

inspection, and medical image processing. Šonka [3] stresses that texture is scale de-

pendent, therefore a multi-scale or multiresolution analysis of an image is required if

texture is going to be analysed. For texture analysis and characterization a multichannel

scale/orientation decomposition is performed using wavelet frame analysis. The main ad-

vantages of the wavelet transform, as a tool for analyzing signals, are: orthogonality, good

spatial and frequency localization, and the ability to perform multiresolution decomposi-

tion.

To describe image features various methods are used however in this chapter we have

proposed the use of image wavelet decomposition [21, 73], using wavelet coefficients at

selected levels. For a classical wavelet transform method with a one level decomposition,

the given image texture is decomposed into four subimages of low-low, low-high, high-low

and high-high subbands. The energies of each subimage at selected decomposition levels

are used as image features for the classification of the images. The energy of the wavelet

coefficients at the kth scale is defined as

Esub,k =

Mk−1∑
i=0

Nk−1∑
j=0

(wsub,k(i, j))
2 (6.1)

where k = 1, . . . , J , sub = LH,HL,HH and Mk, Nk are width and height of the subimage

at scale k. The subband energy shows the distribution of energy and has proven very

efficient for texture characterization. The steps involved in extracting the texture feature

vector from a grayscale image, are outlined in the following procedure (Algorithm 3):

Algorithm 3: Feature extraction

• Subject the grayscale image to a chosen level discrete wavelet

decomposition using the chosen wavelet e.g. the Daubechies wavelet

• Calculate the energies (Ek) of the image detail subands.

• Select any two energies from the detail coefficients to form the

feature vector

Summed squared coefficients at selected decomposition levels can then be used as defini-

tion of image features for their classification. This process can be performed in various

ways owing to the wide range of wavelet functions which can be used for image decompo-
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FIGURE 6.6. One level decomposition of (a) selected image texture, (b) its wavelet decomposi-
tion, and (c) the wavelet coefficients

sition. The choice of the level of image decomposition and selection of wavelet coefficients

(horizontal, vertical and diagonal) determine the estimation of image features.

In some cases the image texture can be degraded by image artifacts and noise compo-

nents so there is a need for image de-noising before the classification. This process can

affect the results of image classification owing to the choice of the subimage subbands

and processing of their features. The scheme of subband decomposition adopted for the

purpose is shown in Fig. 6.6. For feature extraction only the HH, HL and LH subbands

of each stage are considered.

Another method of feature extraction is the computation of (i) the mean of the absolute

value of the coefficients in each subband - these features provide information about the

frequency distribution of the image signal and (ii) the standard deviation of the coefficients

in each subband - these features provide information about the frequency distribution of

the image signal. The mean and standard deviation are calculated using Eq. (6.2) and

Eq. (6.3) respectively.

cmean =
1

MN

M∑
i=1

N∑
j=1

|w(i, j)| (6.2)

cstd =
1

MN

√√√√ M∑
i=1

N∑
j=1

(|w(i, j)| − cmean)2 (6.3)
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Eqs. (6.2) and (6.3) describe the process of getting the features where w(i, j) is the

wavelet coefficient for any subband of size M × N . The wavelet features are obtained

by using the above two equations which implement the mean and standard deviations

of the magnitude of the wavelet coefficients. It is assumed that the local texture regions

are spatially homogeneous, and the mean and the standard deviation of the magnitude of

the transform coefficients are used to represent the region for classification and retrieval

purposes. These feature vectors will be input to the neural network.

6.3 Experimental Results

The suggested subband energy feature extraction algorithm is implemented using an

appropriately chosen wavelet transform. In this algorithm, we use the two-dimensional

discrete wavelet transform to decompose each image texture object in Fig. 6.4(a) into

four frequency bands of LL, LH, HL, and HH. Feature vectors are either formed from

HL, HH or LH subbands because these high-frequency subbands tend to amplify the

corresponding horizontal, vertical, and diagonal edge details. Selecting a proper set of

features cannot only reduce the dimension of feature vectors, but also speed up and

improve the classification. For our simulated image texture a set of 8 feature vectors are

formed. The image texture features from different subbands are presented in Figs. 6.7 and

6.8. Each texture is represented by features in separate columns of pattern matrix P.
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FIGURE 6.7. Image texture features from the
horizontal (H) and diagonal (D) detail coef-
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The pattern matrix P of size 2× 8 for the feature vectors from the energies of the hori-

zontal (H) and diagonal (D) detail coefficients at the first level of wavelet decomposition

is

P =

[
0.7833 0.5980 0.6853 0.2725 0.2518 0.3926 0.2780 0.4277 0.4051
0.9342 0.8325 0.8345 0.2930 0.3219 0.4389 0.3258 0.4415 0.3939

]

The feature vectors obtained by taking the the mean and standard deviation of the

subband detail coefficients of each image texture object at different levels of decomposition

are shown in Fig. 6.9 and Fig. 6.10. A feature vector of size 2 × 8 elements is formed.

Two features are used here to enable a simple visualization even though more features

can enable better classification results in many cases.
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FIGURE 6.10. Image texture features from
the mean of level 1 detail coefficients and
standard deviation of level 2 detail coeff.

6.4 Discussion

We have proposed and investigated a texture feature extraction technique using the dis-

crete wavelet transform. The experiments were conducted using an appropriate simulated

image texture. The results obtained are very promising and showed that the proposed

DWT based feature extractor was computationally efficient. It was observed that first

level wavelet decomposition is sufficient enough to get the necessary input feature vector

essential for classification of the artificial texture. To reduce the size of the input vector

provided to the neural network, the mean and standard deviation was calculated for each

subimage.
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7

Image Texture Classification

This chapter presents the classification of image texture features using a competitive

neural network. The classification is done by assigning data to one of the fixed number of

possible classes. Optimization results in values of weights of output neurons pointing to

typical class features. Classification generally comprises four steps shown in Algorithm 4:

Algorithm 4: Classification procedure

• Pre-processing - feature extraction

• Training - selection of the particular feature which best

describes the pattern.

• Decision - choice of suitable method for comparing the image

patterns with the target patterns.

• Assessing the accuracy of the classification.

The chapter proposes a method for classification of textures based on the (i) energies of

image subbands and (ii) mean and standard deviations of image detail coefficients. We

show that even with this relatively simple feature set, effective texture classification can

be achieved.

Pattern recognition is the process of assigning patterns to one of a number of classes.

Unsupervised classification (e.g.. clustering ) in which the pattern is assigned to a hitherto

unknown class. pattern recognition algorithms. Common operations include segmenting

images to identify and separate the various objects present, measuring and classifying

those objects. Pattern recognition continues by classifying the objects on the basis of

their characteristics, applying statistical analysis to the results. Patterns of a class should

be grouped or clustered together in pattern or feature space if decision space is to be

partitioned objects near together must be similar objects far apart must be dissimilar.

An artificial neural network is simply defined as a network with interactions, in attempt

to mimicke the brain. A neuron is a basic building-block of the brain. The artificial neuron

model has a set of inputs, each of which has a weight and bias assigned to them. The

net value of the neuron is calculated as weighted sum which is the sum of all the inputs

multiplied by their specific weight. Each neuron has its own unique threshold value which

is obtained from an activation (transfer) function and from this we get the neuron output.
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7.1 Competitive Neural Network

Classification of image segments into a given number of classes using segments features

is done by using a Kohonen competitive neural network, a schematic architecture of the

network is shown in Fig. 7.1. The Kohonen network is an N -dimensional network, where

N is the number of inputs. For simplicity, we will look at 2-dimensional networks. Each

input node is connected to each output node. The dimension of the training patterns

determines the number of input nodes. The networks are feed-forward networks that

use an unsupervised training algorithm, and through a process called self-organization,

configure the output units into a spatial map.

A  

B  

C  

...

   

PATTERNS

P(1,1) ... P(1,Q)
P= 

P(2,1) ... P(2,Q)

CLASS

W(1,1)  W(1,2)
W(2,1)  W(2,2)W=   .....       .....
W(S,1)  W(S,2)

FIGURE 7.1. Competitive neural network

The network contains two layers of nodes - an input layer and a mapping (output)

layer which are fully connected. Each image texture is represented by two features in

separate columns of the pattern matrix P . The weight matrix W is the connection matrix

for the input layer to the output layer. The number of nodes in the input layer is equal

to the number of features associated with the input. A Kohonen’s competitive learning

algorithm that has been verified for our classification purposes can be summarized as

follows (Algorithm 5):
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Algorithm 5: Kohonen’s competitive learning algorithm

• Let the pattern matrix P be denoted by

P =

[
p11 . . . p1k . . . p1Q

p21 . . . p2k . . . p1Q

]

and the weight matrix W represented by

W =

⎡
⎢⎢⎣

w11 w12

w21 w22

. . . . . .
wS1 wS2

⎤
⎥⎥⎦ (7.1)

• Step 1. Initialize all weights to random values. Each neuron in

the Kohonen layer receives a complete copy of an input pattern.

• Step 2. Find the wining neuron. This neuron is the one with the

smallest Euclidean distance di from the point represented by the

input vector to the point represented by the weights, given by:

di =
R∑

j=1

√
(pjk − wij) (7.2)

wij is the weight that connects the input node i to neuron j, where

i = 1, 2, . . . , S, j = 1, 2, . . . , R, k = 1, 2, . . . , Q. S is the number of

output neurons (classes), R is the number of input nodes and Q
is the number of columns of the input vector

• Step 3. For the winning neuron, the following learning formula is

used to modify the weights:

∆wij = α.(pjk − wij) (7.3)

In other words, the change in the weights of the winner is

just proportional to the difference between the input vector

and the weight vector for the winning node. The constant of

proportionality α is the learning rate. Update the weight vector

of winning unit only with

wij = wij + ∆wij (7.4)

The network learns by moving the winning weight vector towards the

input vector.

• Step 4. Repeat Steps 1-3 using the entire input patterns. The

weights are adjusted each time.

• Step 5. Repeat Step 4 for a specified number of times (epochs).

Eventually each of the weight vectors would converge to the

centroid of one cluster. At this point, the training is complete.
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The following diagram (Fig. 7.2) illustrates what happens. Competitive layers can be un-

derstood better when their weight vectors and input vectors are shown graphically. The

diagram shows 9 two-element input vectors represented as with ‘+’ markers. The input

vectors appear to fall into clusters. There are 3 output nodes and therefore, 3 weight vec-

tors (the small circles). The weights are initially random, as in Fig. 7.2(a). A competitive

network of eight neurons is used to classify the vectors into such clusters.
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FIGURE 7.2. Competitive learning process. The dots represent the input vectors and the crosses
represent the weights of the three output neurons (a) before learning and (b) after learning

After all of the inputs of the pattern matrix P are processed (usually after hundreds

of repeated iterations), the result should be a 2D spatial organization of the input data

organized into clusters of similar (neighbouring) regions. The topology of the Kohonen

self-organizing feature map is represented as a two dimensional grid.

During training [35], the weight vectors ’move around’. After the learning process we

have a final state of the network shown in Fig. 7.2(b). Each weight vector is at the ’center

of gravity’ of each input vector group. The weight vectors represent a kind of average of

the input vectors in each group. When new samples are presented to a trained net, it

is compared to the weight vectors which are the centroids of each cluster. By measuring

the distance from the weight vectors using the neural net, the sample would be correctly

grouped into the cluster to which it is closest. It must be noted some neurons never or

rarely participate in the competition and don’t become winners at all, their weight vectors

are not be updated such type of neurons are called dead neurons.
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MATLAB Implementation

Competitive learning algorithm for the neural network design is implemented by us-

ing the MATLAB Neural Network toolbox [22]. The MATLAB functions used for the

classification are shown in Fig. 7.3.

% Neural Network Pattern Classification

% PAT -- Pattern matrix of size 2xN

% initializing the network

net = newc(minmax(PAT),S,klr,0);

%training the network

net = train(net,PAT);

% simulation

A = sim(net,PAT);

% class allocation

Ac = vec2ind(A);

% class analysis

ClassAnal=[[1:S]; ClassLength; ClassSTD; ClassTypical];

FIGURE 7.3. Neural network function algorithm

The important functions used include:

• newc - create a competitive layer it takes these inputs, PAT - matrix of min and

max values for PAT input elements. S - Number of classes and klr - is the Kohonen

learning rate. The layer has a weight from the input, and a bias b. If the samples are

in clusters, then every time the winning weight vector moves towards a particular

sample in one of the clusters. Eventually each of the weight vectors would converge

to the centroid of one cluster. At this point, the training is complete.

• train - train a neural network by choosing the number of epochs, which represents

the total number of times the entire set of training data will pass through the

network structure.

• sim - simulates the neural network by taking the initialized net and network input

matrix PAT

• vec2ind - convert vectors to class indices
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Finally the ClassAnal matrix provides the full information concerning the classification

of the images

ClassAnal =

⎡
⎢⎢⎣

1.0000 2.0000 3.0000
3.0000 3.0000 3.0000
0.0214 0.0460 0.0789
8.0000 1.0000 5.0000

⎤
⎥⎥⎦

The first row of the ClassAnal matrix gives the class indices, the second row is the

number of image textures in each class, the third row is the standard deviation of the

image textures and the last row gives the texture which is typical of the respective class

e.g. for class index 2, texture image number 1 is the typical texture of the class.

7.2 Determination of Classification Boundaries

During the learning phase, classification boundaries are constructed that may depend

on the distribution of samples in the learning set. A neural network has to assign every

input feature vector to a class and group the input vectors into clusters. In the case that

the learning process is successfully completed network weights belonging to separate out-

put elements represent typical class features. The image corresponding to image features

closest to separate pair of weights in this case represent a typical image of a selected class.

7.2.1 Empirical Computation of Class Boundaries

An empirical method which finds the class boundaries even for cases when the bias is

non-zero has been proposed. The algorithm is described as follows (Algorithm 6):

Algorithm 6: Empirical computation

• Find the minimum and maximum values of the pattern matrix P

• Divide the region into a space of small squares

• Find the co-ordinates of the squares

• Determine the class of each square

The whole procedure described above is done for all the squares and each square is as-

signed its class and coloured according to which class it belongs. If the dimensions of the

squares are very small the boundaries are very smooth and for example when b = 0 it

can be shown that the boundary lines of Algorithm 6 and 7 closely relate to each other.

By using the algorithm described above the class boundaries for the cases when b �= 0 are

easily found even though they would not be so smooth.
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7.2.2 Mathematical Computation of Class Boundaries

The decision boundaries are determined completely by the weights wij and the biases

bi. Algorithm 7 below shows how the class boundaries are computed with respect to the

Euclidean distance of the the feature vectors and the weights.

Algorithm 7: Mathematical computation

• Find the Euclidian distance between the elements of the pattern

matrix and the centre weights

di =
√

(p1k − wi1)2 + (p2k − wi2)2 + bi

where i = 1, 2, . . . , S and k = 1, 2, . . . , Q. S is the number of classes

and Q is the number of columns in pattern matrix P.

• Equate each distance to each and every other distances and setting

the biases to zero we will get equations of the boundary lines

e.g. if S = 3 that means d1 = d2 and d1 = d3. By equating d1

to d2 and expressing p1k as the dependent variable and p2k as

the independent variable we will have an equation in the form

p1k = f(p2k)

p1k =
w2

11 + w2
12 − (w2

21 + w22)
2 − 2p2k(w12 − w22)

2(w11 − w21)

This is a linear equation since all the weights are constant

except for the variables p1k and p2k. For d1 and d3 we have

p1k =
w2

11 + w2
12 − (w2

31 + w32)
2 − 2p2k(w12 − w32)

2(w11 − w31)

and finally for d2 = d3

p1k =
w2

21 + w2
22 − (w2

31 + w32)
2 − 2p2k(w22 − w32)

2(w21 − w31)

• Calculate points of intersection for each line with other lines

• Examine the given line segments between all points of intersection

- if the middle point of the current segment forms a part of a

boundary, the entire segment is a boundary line

• Class boundaries are found in such a way that the two-dimensional

plane is divided into the same number of region boundaries as the

number of classes
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7.3 Classification Results of Artificial Image Texture

A competitive neural network is applied for the classification of the simulated image

textures (Fig. 7.4). In texture classification the goal is to assign an object into one of a

set of predefined set of texture classes. The classification is performed by using a subset

of the subband energies that are measured to produce a feature vector that describes

the texture. In these experiments, both mean absolute value and variance of frequency

bands were used as energy measures in the feature sets. The algorithms described in the

previous sections of the chapter have been verified for the classification of a simulated

image texture presented in Fig. 7.4.

 (a) IMAGE TEXTURE

FIGURE 7.4. Simulated image texture

Results of the classification into three classes by a self-organizing neural network are

shown in Fig. 7.5 and Fig. 7.6. The feature vectors are obtained from energies of the image

detail subbands (horizontal (H), vertical (V) and diagonal (D) detail coefficients) for a

chosen decomposition level. The classification results performed by using the mean and

standard deviations (STD) of the image detail coefficients at each decomposition level are

represented in Fig. 7.7 and Fig. 7.8. Features in wavelet domain have shown to be effective

in texture representation for the classification purposes. The class boundaries for all the

cases are found by setting the biases to zero. Euclidian distances between the elements

of the pattern matrix and the centre weights have been used for the determination of the

class boundaries (Algorithm 7).
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FIGURE 7.5. Class boundaries and classification of the simulated texture image into three
classes. Horizontal (H) and diagonal (D) features from the first level decomposition.
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FIGURE 7.6. Class boundaries and classification of the simulated texture image into three
classes. Horizontal (H) and vertical (V) features from the first level decomposition.
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FIGURE 7.7. Class boundaries and classification of the simulated texture image into three
classes. Features from the mean and the standard deviation of the first level detail coefficients.
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FIGURE 7.8. Class boundaries and classification of the simulated texture image into three
classes. Features from the mean of the first level detail coefficients and the standard deviation
of the second level image detail coefficients.
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Clustering of the image features shows that image textures of similar structure belong

to the same class. Fig. 7.9 presents the texture images typical for individual classes.

 (a)  (b)  (c)

FIGURE 7.9. Typical image texture of separate classes

Results of texture classification into three classes for different features are compared in

Tabs. 7.1 and 7.2. Each class is characterized by the variation of signal features distances

from the typical class element which resulted from the classification process. It can be

observed that features obtained by the discrete wavelet transform based upon different

wavelet functions and different number of decomposition levels provide similar results.

TABLE 7.1. Comparison of image segments classification into three classes using

a one level discrete wavelet decomposition (daubechies2 (db2) wavelet function)

and taking the horizontal (H), vertical (V) or diagonal (D) coefficients feature

source

Typical Class Image / Number of Images
Class Standard Deviation

Feature A B C

H, D 8/3 1/3 5/3
0.0214 0.0460 0.0789

H, V 6/3 1/3 7/3
0.0395 0.2802 0.1831

TABLE 7.2. Comparison of image segments classification into three classes us-

ing wavelet decomposition into given number of levels (1, 2) by applying the

daubechies2 (db2) wavelet function and using the mean (M) and standard devia-

tion (STD) feature source

Typical Class Image / Number of Images
Class Standard Deviation

Feature A B C

1M, 1STD 6/3 4/3 1/3
0.0005 0.0010 0.0012

1M, 2STD 3/3 9/3 4/3
0.0008 0.0036 0.0016
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7.4 Discussion

Competitive learning neural networks have been successfully used as unsupervised

training methods for simulated image texture classification. A correct classification was

attained by using subband energy-based feature sets from image decompositions. The

contribution in the use of wavelet transform for image classification was discussed. Math-

ematical basis of the discrete wavelet transform and the numerical experiments proved

that image features based on wavelet transform coefficients can be used very efficiently

for image texture classification.

However there are problems which are associated with the choice of wavelets, suitable

level of decomposition and which subband details to consider for the feature extraction

whether the horizontal, vertical or diagonal details. Using other transform methods such

as the complex wavelet transform [45, 34], the classification of image textures can also

be greatly enhanced. Another major problem of neural networks when used as classifiers

lies in their lack of good rejection capabilities: a neural network has to assign every input

feature vector to a class even though some vectors may not belong to any of the learnt

classes.

It is assumed that further research will be devoted to more sophisticated methods of

image feature classification of real MR images. Brain tissue classification from MR images

help MR image feature analysis for automatic disease classification. The key element is

to choose those MR image features that best discriminate disease classes.
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8

Conclusions

The thesis has been devoted to the de-noising algorithms based upon the discrete

wavelet transform that can be applied to enhance noisy multidimensional MR data sets

i.e. 2-D image slices and 3-D image volumes. The trade-off between noise elimination and

detail preservation was analyzed using the MSE, MAE, PSNR and visual criteria. Thus a

comparison between the qualities and performance of various wavelet functions were de-

duced using these criteria. Effectiveness of each filter is dependent on the type of image,

the error criterion used, the nature and amount of contaminating noise. It was seen that

the fourth-order Daubechies (db4) wavelet function performed well for the de-noising of

the random noise both in the cases of simulated and real MR data sets, this can be clearly

seen with its considerable improvement in PSNR and producing visually more pleasing

images. The advantage of the DWT is in its flexibility caused by the choice of various

wavelet functions. Since normal random noise constitutes most of the high frequency

components by designing a suitable filter the noise was suppressed to a minimum.

For representing the image data sets, we have used a wavelet transform that is, a

multiscale, multiorientation invertible subband representation. The wavelet transform is

used to decompose an image into a low-frequency component and a set of higher-frequency

details at varying scales of resolution. By analyzing the wavelet transform coefficients, high

frequency details which correspond to image noise can be eliminated by using different

threshold methods. This way noise is reduced from an image without losing the anatomical

information which is of interest to medical doctors. Wavelets have demonstrated to be a

very powerful tool for analysis, processing and synthesis of relevant image features.

The implementation of the DT CWT in the de-noising of MR images has been also

examined. As shown by the experimental results for most of the de-noising applications

the DT CWT gives better results than the classical wavelet transform. Complex wavelets

have also proved that they are important tools which can used for other implications of

the research such as segmentation and classification. It can be concluded that the DWT

and DT CWT are important mathematical tools in biomedical image processing. Finally

it is assumed that processing of MR images will result in further methods of image de-

noising, edge detection and their enhancement using methods like spline interpolation,

resolution enhancement, image reconstruction and feature extraction.



100 8. Conclusions

A watershed algorithm for segmentation of MR images was proposed. The principle of

the method was described and tested, first, with artificial textures yielding fairly good

results. The algorithm was then used to segment a human knee MR image. The anatomical

regions: muscle, bone and tissue, and the background could be distinguished. The results

show that this method can be comparable to the widely available commercial software,

and it performs reasonably well with respect to manual segmentation.

The feature extraction method was computationally efficient in the determination of

the feature vectors using coefficients of different subbands. The classification methods

studied were neural network methods based on self-organizing network. The methods can

be applied for the classification of MR images especially for diagnosis of diseases.

The work presented in this thesis can be extended in several directions. Here we present

several of the research directions which might be followed for the further applications in

the segmentation and classification of real MR image features rather than the simulated

image textures we have used. We review the possible improvements that can be brought

to the segmentation algorithms and classification methods proposed in this work.

Efficient texture representation is important for the retrieval of image data. The princi-

ple lies in the computation of a small set of of texture describing features for each image in

a database so that it is possible to search in the database for images containing a certain

feature. DT CWT has been found to be useful for classification as documented in [34].

For clinical application of image analysis, accurate determination of object boundary

is often required and such a task is not trivial due to the complexity of biological objects.

This thesis presented a watershed-based segmentation algorithm which might be useful for

expert users to extract object boundary from medical images reproducibly and accurately.

Our on-going research effort is to extend the present algorithm such that it can also

distinguish the texture and ultimately incorporate such textural descriptors to real MR

brain images for a cooperative boundary or region segmentation framework.

In the thesis we have shown that watershed method provides promising segmentation

results which are useful for the segmentation of MR image texture. Better results can

be achieved in the case of more precise image segmentation and image pre-processing for

noise rejection and artifacts removal. These possibilities can be further extended by the

use of complex wavelet functions [34] applied for image decomposition.

Selected results are available from the author’s web page: http : //dsp.vscht.cz



9. References 101

9

References

[1] A. N. Akansu and R. A. Haddad. Multiresolution Signal Decomposition: Trans-

forms, Subbands,Wavelets. Academic Press, 2000.

[2] A. Bilgin and M.W. Marcellin. Three dimensional Image Compression with Integer

Wavelet Transforms. Applied Optics, 39, April 2000.

[3] G. E. P. Box, G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting

and Control. Prentice Hall, Engelwood Cliffs, U.S.A., third edition, 1994.

[4] Michael Breakspear, Michael Brammer, Edward Bullmore, Pritha Das, and Leanne

Williams. Spatiotemporal Wavelet Resampling for Functional Neuroimaging Data.

Human Brain Mapping, 23(1):1–25, 2004.

[5] A. Bruce, D. Donoho, and Hong-Ye Gao. Wavelet Analysis. IEEE Spectrum,

33(10):26–35, October 1996.

[6] E. N. Bruce. Biomedical Signal Processing and Signal Modeling. John Wiley &

Sons, 2000.

[7] Edward Bullmore, Jalal Fadili, Michael Breakspear, Raymond Salvador, John Suck-

ling, and Mick Brammer. Wavelets and Statistical Analysis of Functional Magnetic

Resonance Images of the Human Brain. Statistical Methods in Medical Research,

12(5):375 – 399, 2003.

[8] Edward Bullmore, Jalal Fadili, Voichita Maxim, Levent Sendur, John Suckling Bran-

don Whitcher, Mick Brammer, and Michael Breakspear. Wavelets and Functional

Magnetic Resonance Imaging of the Human Brain. NeuroImage, 23(Sup 1):234–249,

2004.

[9] R. L. Burden and J. D. Faries. Numerical Analysis. Brooks/Cole, seventh edition,

2001.

[10] C. S. Burrus, R.A. Gopinath, and H. Guo. Introduction to Wavelets and Wavelet

Transforms. Prentice Hall, New Jersey, 1998.



102 9. References

[11] K. R. Castleman. Digital Image Processing. Prentice Hall Press, 1996.

[12] Y. T. Chan. Wavelet Basics. Kluwer Academic Publishers, Boston, 1995.

[13] S. Chang, B. Yu, and M. Vetterli. Spatially adaptive wavelet thresholding with

context modeling for image de-noising. ICIP, 1:535–539, 1998.

[14] R. Chellappa. Digital Image Processing. IEEE Computer Society Press, Los Alami-

tos, USA, 1992.

[15] L. Cohen. Time–frequency Analysis. Prentice Hall, Englewood Cliffs (NJ), 1995.

[16] J.W. Cooley and J.W. Tukey. An algorithm for the machine calculation of complex

fourier series. Mathematics of Computation, 19:297–301, 1965.

[17] P. Dastidar. Overview of Neuroradiological MRI . International Journal of Bioelec-

tromagnetism, 1(1), 1999.

[18] I. Daubechies. Orthonormal Bases of Compactly Supported Wavelets. Communi-

cations on Pure Applied Mathematics, 41:909–996, 1988.

[19] I. Daubechies. The wavelet transform, time-frequency localization and signal anal-

ysis. IEEE Trans. Info. Theory, 36:961–1005, 1990.

[20] I. Daubechies. Ten Lectures on Wavelets. Society for Industrial and Applied Math-

ematics, Philadelphia, Pennsylvania, 1992. 357p.

[21] L. Debnath. Wavelets and Signal Processing. Birkhauser Boston, 2003.

[22] H. Demuth and M. Beale. Neural Network Toolbox. The MathWorks, Inc., Natick,

Massachusetts 01760, 1998.

[23] D.L. Donoho. De-noising by Soft Thresholding. IEEE Trans. on Information The-

ory, 38(2):613–627, 1995.

[24] D.L. Donoho and I.M. Johnstone. Ideal Spatial Adaption via Wavelet Shrinkage.

Biometrika, 81(3):425–455, 1994.

[25] Jalal Fadili and Edward Bullmore. Wavelet-Generalized Least Squares: A New Blu

Estimator of Linear Regression Models with 1/f Errors. Neuroimage, 15(1):217 –

232, 2002.



9. References 103

[26] Jalal Fadili and Edward Bullmore. A Comparative Evaluation of Wavelet-Based

Methods for Hypothesis Testing of Brain Activation Maps. NeuroImage, 23(3):1112

– 1128, 2004.

[27] F. Fernandes. Directional, Shift-Insensitive, Complex wavelet Transforms with Con-

trollable Redundancy. PhD thesis, Rice University, August 2001.

[28] F. Fernandes, I. Selesnick, R. van Spaendonck, and C. Burrus. Complex Wavelet

Transforms with Allpass Filters. Signal Processing, 40(9):1689–1706, August 2003.

[29] H. Frey, A. Lahtinen, T. Heinonen, and P. Dastidar. Clinical Application of MRI

Image Processing in Neurology. International Journal of Bioelectromagnetism, 1(1),

1999.

[30] R. C. Gonzalez and R. E. Woods. Digital Image Processing (2nd Edition). Addison-

Wesley, 2002.

[31] R. C. Gonzalez, R. E. Woods, and S. L. Eddins. Digital Image Processing Using

MATLAB. Prentice Hall, Englewood Cliffs, NJ, USA, 2004.

[32] H. Guo, G.A. Sitton, and C.S. Burrus. The Quick Fourier Transform: An FFT

Based on Symmetries. IEEE Trans. on Signal Processing, 46(2):335–341, February

1998.

[33] D. Hagyard, M. Razaz, and P. Atkin. Analysis of watershed algorithms for greyscale

images. In Proceedings of the IEEE International Conference on Image Processing,

volume 3, pages 41–44, 1996.

[34] S. Hatipoglu, S. K. Mitra, and N. G. Kingsbury. Texture classification using dual–

tree complex wavelet transform. Image Processing And Its Applications, (465):344–

347, 1999.

[35] S. Haykin. Neural Networks. IEEE Press, New York, 1994.

[36] T. Heinonen, P. Dastidar, H. Frey, and H. Eskola. Applications of MR Image

Segmentation. International Journal of Bioelectromagnetism, 1(1), 1999.

[37] V. K. Ingle and J. G. Proakis. Digital Signal Processing Using MATLAB.

Brooks/Cole, 2000.



104 9. References

[38] K. Jafari-Khouzani and H. Soltanian Zadeh. Rotation-Invariant Multiresolution

Texture Analysis Using Radon and Wavelet Transforms. IEEE Transactions on

Image Processing, 14(6):783 – 795, 2005.

[39] A. Jalobeanu, L. Blanc-Feraud, and J. Zerubia. Satellite Image Deconvolution Using

Complex Wavelet Packets. Technical report, Institut National de Recherche en

Informatique et en Automatique, France, 2000.

[40] N. Kalouptsidis. Signal Processing Systems: Theory and Design. John Wiley and

Sons, Inc., UK, 1997.

[41] C. Kamath and I.K. Fodor. Undecimated Wavelet Transforms for Image De-noising.

Applied Scientific Computing, Lawrence Livermore National Laboratory, November

2002.

[42] H. Khalil and S. Shaheen. Three Dimensional Video Compression. IEEE Transac-

tions on Image Processing, 8:762–773, June 1999.

[43] N. Kingsbury and J. Magarey. Motion Estimation Using Complex Wavelets. Tech-

nical report, Cambridge University Engineering Department, UK, 1995.

[44] N. G. Kingsbury. The Dual–Tree Complex Wavelet Transform: A New Technique

for Shift Invariance and Directional Filters . In Proceedings of the IEEE Digital

Signal Processing Workshop, 1998.

[45] N. G. Kingsbury. Image Processing with Complex Wavelets. Phil. Trans. Royal

Society London, 1999.

[46] N. G. Kingsbury and J. F. A. Magarey. Wavelet Transforms in Image Processing.

Proc. First European Conference on Signal Analysis and Prediction, pages 23–24,

June 1997.

[47] R. Klette and P. Zamperoni. Handbook of Image Processing Operators. John Wiley

& Sons, New York, 1994.

[48] R. Kuc. Introduction to Digital Signal Processing. McGraw-Hill, New York, 1982.
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[95] M. Šonka, V. Hlaváč, and R. Boyle. Image Processing: Analysis and Machine Vi-

sion. O’Reilly, 1999.

[96] T. C. Wang and N. B. Karayiannis. Detection of microcalcifications in digital

mammograms using wavelets. IEEE Trans. on Medical Imaging, 17(4), August

1998.

[97] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assess-

ment: From error visibility to structural similarity. IEEE Trans Image Processing,

13(4):600–612, April 2004.

[98] C.D. Watkins, A. Sadun, and S. Marenka. Modern Image Processing: Warping,

Morphing, and Classical Techniques. Academic Press Professional, 1993.

[99] A. B. Watson, R. Borthwick, and M. Taylor. Image quality and entropy masking.

In Human Vision, Visual Processing, and Digital Display VIII, volume 30(16) of

SPIE Proceedings, San Jose, CA, USA, 1997.

[100] A. B. Watson and J. A. Solomon. A model of visual contrast gain control and

pattern masking. Journal of the Optical Society of America, 14, 1997.

[101] S. Zhong and V. Cherkassky. Image de-noising using wavelet thresholding and model

selection. In Proc. IEEE Int. Conf. on Image processing, 2000.



10. List of the Author’s Publications 109

10

List of the Author’s Publications
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Appendix A

Mathematics

A.1 Linear Algebra

The mathematics of wavelets [80] rely heavily on fundamental ideas from linear algebra.

This appendix reviews a few important ideas.

Vector Spaces

Definition A vector space (over the reals) can be loosely defined as a collection V of

elements where

• For all a, b ∈ R and for all u, v ∈ V , au + bv ∈ V .

• There exists a unique element 0 ∈ V such that

– for all u ∈ V, 0u = 0, and

– for all u ∈ V, 0 + u = u.

• Other axioms [80] hold true, most of which are necessary to guarantee that multi-

plication and addition behave as expected.

The elements of a vector space V are called vectors, and the element 0 is called the zero

vector. The vectors may be geometric vectors, or they may be functions, as is the case

when discussing wavelets and multiresolution analysis.

Bases and Dimension

Definition A collection of vectors u1, u2, · · · in a vector space V are said to be linearly

independent if

c1u1 + c2u2 + · · · = 0 if and only if c1 = c2 = · · · = 0.

A collection u1, u2, · · · ∈ V of linearly independent vectors is a basis for V if every

v ∈ V can be written as

v =
∑

i

civi

for some real numbers c1, c2, · · · . The vectors in a basis for V are said to span V . Intuitively

speaking, linear independence means that the vectors are not redundant, and a basis

consists of a minimal complete set of vectors.
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If a basis for V has a finite number of elements u1, u2, · · · , um, then V is finite-

dimensional and its dimension is m. Otherwise, V is said to be infinite-dimensional.

Example: R3 is a three-dimensional space, and e1 = (1, 0, 0), e2 = (0, 1, 0), e3 =

(0, 0, 1) is a basis for it.

Example: The set of all functions continuous on [0, 1] is an infinite-dimensional vector

space. Well call this space C[0, 1].

Inner Products and Orthogonality

Definition The inner (dot) product of two vectors is the sum of the point-wise multi-

plication of each component:

u.v =
∑

i

uivi

The generalization of the dot product to arbitrary vector spaces is called an inner

product. Formally, an inner product 〈·|·〉 on a vector space V is any map from V ×V to R

Example: It is straightforward to show that the dot product on R3 defined by

〈(a1, a2, a3)|(b1, b2, b3)〉 = a1b1 + a2b2 + a3b3

For functions?

f.g =

∫ ∞

−∞
f(x)g(x)dx

Example: The following ”standard” inner product on C[0, 1] plays a central role in

most formulations of multiresolution analysis:

〈f |g〉 =

∫ 1

0

f(x)g(x)dx

One of the most important uses of the inner product is to formalize the idea of orthog-

onality. Two vectors u, v in an inner product space are said to be orthogonal if 〈u|v〉 = 0.

It is not difficult to show that a collection u1, u2, · · · of mutually orthogonal vectors must

be linearly independent, suggesting that orthogonality is a strong form of linear indepen-

dence. An orthogonal basis is one consisting of mutually orthogonal vectors.

Norms and Normalization

Definition A norm is a function that measures the length of vectors. In a finite di-

mensional vector space, we typically use the norm ‖u‖ = 〈u|u〉1/2. If we are working with

a function space such as C[0, 1], we ordinarily use one of the Lp norms, defined as

‖u‖ =

(∫ 1

0

|u(x)|pdx

)1/p
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In the limit as p tends to infinity, we get what is known as the max-norm:

‖u‖∞ = maxx∈[0,1]|u(x)|

Even more frequently used is the L2 norm, which can also be written as ‖u‖2 = 〈u|u〉1/2

if we are using the standard inner product. A vector u with ‖u‖ = 1 is said to be normal-

ized. If we have an orthogonal basis composed of vectors that are normalized in the L2

norm, the basis is called orthonormal. Stated concisely, a basis u1, u2, . . . is orthonormal

if

〈ui|uj〉 = δij

where δij is called the Kronecker delta and is defined to be 1 if i = j, and 0 otherwise.

Example: The vectors e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1) form an orthonormal

basis for the inner product space R3 endowed with the dot product.
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A.2 Downsampling - Decimation

The down-sampler [1], represented by the following diagram,

2x(n) y(n)

is defined as

y(n) = x(2n) (A.1)

The usual notation is

y(n) = [↓ 2]x(n) (A.2)

The down-sampler simply keeps every second sample, and discards the others (this has

the effect of compressing the sequence in time). For example, if x(n) is the sequence

x(n) = {. . . , 7, 3, 5, 2, 9, 6, 4, . . .}

where the underlined number represents x(0), then y(n) is given by

y(n) = [↓ 2]x(n) = {. . . , 7, 5, 9, 4, . . .}

Given X(z), what is Y (z)? Using the example sequence above we directly write

X(z) = . . . + 7z2 + 3z + 5 + 2z−1 + 9z−2 + 6z−3 + 4z−4 + . . . (A.3)

and

Y (z) = . . . + 7z + 5 + 9z−1 + 4z−2 + . . .

To express Y (z) in terms of X(z), consider the sum of X(z) and X(−z). Note that X(−z)

is given by

X(−z) = . . . + 7z2 − 3z + 5 − 2z−1 + 9z−2 − 6z−3 + 4z−4 + . . . (A.4)

The odd terms are negated. Then

X(z) + X(−z) = 2.(. . . + 7z2 + 5 + 9z−2 + 4z−4 + . . .) (A.5)

X(z) + X(−z) = 2.Y (z2) (A.6)

Using the Z transform definition we have after multiplying both sides of Eq. (A.6) by z
1
2

∑
n

x(n)z−nz
1
2 +

∑
n

x(n)(−z)−nz
1
2 = 2.

∑
n

y(n)z−2nz
1
2

∑
n

x(n)z−
n
2 +

∑
n

x(n)(−z)−
n
2 = 2.

∑
n

y(n)z−n

X(z
1
2 ) + X(−z

1
2 ) = 2.Y (z)
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Thus

Y (z) = Z{[↓ 2]x(n)} =
X(z

1
2 ) + X(−z

1
2 )

2
(A.7)

The effect of down-sampling on the Fourier transform of a signal?

The discrete-time Fourier transform of y(n) is given by

Y (ejω) =
X(z

1
2 ) + X(−z

1
2 )

2

∣∣∣
z=ejω

=
1

2

(
X(ej ω

2 ) + X(−ej ω
2 )
)

=
1

2

(
X(ej ω

2 ) + X(e−jπej ω
2 )
)

=
1

2

(
X(ej ω

2 ) + X(ej(ω
2
−π)
)

=
1

2

(
Xf (

ω

2
) + Xf (

ω

2
− π)

)

Y (z) = DTFT{[↓ 2]x(n)} =
1

2

(
Xf (

ω

2
) + Xf (

ω

2
− π)

)
(A.8)

where we have used the notation Y f (ω) = Y (ejω) and Xf (ω) = X(ejω).

Note that because Xf (ω) is periodic with a period of 2π the functions Xf (ω
2
) and Xf (ω−2π

2
)

are each periodic with a period of 4π. But as Y f (ω) is the Fourier transform of a signal,

it must be 2π periodic. What does Y f (ω) look like. It is best illustrated with an example

(Fig. A.1).

Notice that while the two terms Xf (ω
2
) and Xf (ω−2π

2
) are 4π-periodic, because one is

shifted by 2π, their sum is 2π-periodic, as a Fourier transform must be.

Notice that when a signal x(n) is down-sampled, the spectrum Xf (ω) may overlap with

adjacent copies, depending on the specific shape of Xf (ω). This overlapping is called

aliasing. When aliasing occurs, the signal x(n) can not in general be recovered after it

is down-sampled. In this case, information is lost by the downsampling. If the spectrum

Xf (ω) were zero for π
2
≤ |ω| ≤ π, then no overlapping would occur, and it would be

possible to recover x(n) after it is down-sampled.

General case: An M-fold down-sampler, represented by the diagram,

is defined as

y(n) = x(Mn) (A.9)

The usual notation is

y(n) = [↓ M ]x(n) (A.10)

The M-fold down-sampler keeps only every M th sample. For example, if the sequence x(n)

x(n) = {. . . , 8, 7, 3, 5, 2, 9, 6, 4, 2, 1, . . .}
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−4 −3 −2 −1 0 1 2 3 4
0

0.5

1
Xf (ω
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Xf (ω
/2
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FIGURE A.1. Spectrum of the original signal x(n).

Mx(n) y(n)

is down-sampled by a factor M = 3, the result is the following sequence

y(n) = [↓ 2]x(n) = {. . . , 8, 5, 6, 1, . . .}

Similarly, we have

Y (z) = Z{[↓ M ]x(n)} =
1

M

M−1∑
k=0

X(W kz
1
M ) (A.11)

where W = ej 2π
M and Y f (ω) is defined by

Y f (ω) = DTFT{[↓ M ]x(n)} =
1

M

M−1∑
k=0

Xf (
ω + 2πk

M
) (A.12)

Remarks

1. In general, information is lost when a signal is down-sampled.

2. The down-sampler is a linear but not a time-invariant system.

3. In general, the down-sampler causes aliasing.
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A.3 Upsampling

The up-sampler, represented by the diagram,

2x(n) y(n)

is defined by the relation

y(n) =

{
x(n

2
) for n even

0 for n odd
(A.13)

The up-sampler simply inserts zeros between samples. For example, if x(n) is the sequence

x(n) = {. . . , 3, 5, 2, 9, 6, . . .}

where the underlined number represents x(0), then y(n) is given by

y(n) = [↑ 2]x(n) = {. . . , 0, 3, 0, 5, 0, 9, 0, 6, 0 . . .}

Given X(z), what is Y (z)? Using the example sequence above we directly write

X(z) = . . . + 3z + 5 + 2z−1 + 9z−2 + 6z−3 + . . . (A.14)

and

Y (z) = . . . + 3z2 + 5 + 2z−2 + 9z−4 + 6z−6 + . . . (A.15)

It is clear that

Y (z) = Z{[↑ 2]x(n)} = X(z2) (A.16)

We can also derive this using the definition:

Y (z) =
∑

n

y(n)z−n

=
∑

n even

x(
n

2
)z−n

=
∑

n

x(n)z−2n

= X(z2)

(A.17)

How does up-sampling affect the Fourier transform of a signal?

The discrete-time Fourier transform of y(n) is given by

Y (ejω) = X(z2)
∣∣∣
z=ejω

= X((ejω)2)

(A.18)
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so we have

Y (ejω) = X(ej2ω) (A.19)

Or using the notation Y f (ω) = Y (ejω), Xf (ω) = X(ejω), we have

Y f (ω) = DTFT{[↑ L]x(n)} = Xf (2ω) (A.20)

When sketching the Fourier transform of an up-sampled signal, it is easy to make a

mistake. When the Fourier transform is as shown in Fig. A.2, it is easy to incorrectly

think that the Fourier transform of y(n) is given by the second figure. This is not correct,

because the Fourier transform is 2π-periodic. Even though it is usually graphed in the

range −π ≤ ω ≤ π or 0 ≤ ω ≤ π outside this range it is periodic.Because Xf (ω) is a

2π-periodic function of ω, Y f (ω) is a π-periodic function of ω.

The correct graph of Y f (ω) is the second subplot in Fig. A.2. Note that the spectrum of

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4
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X
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0.6

0.8

1

ω / π

Y
f (ω

) 
=

 X
f (2

ω
)

FIGURE A.2. Upsampling by a factor of 2: Spectrum of the original signal x(n) and its com-
pressed spectral replicas.

Xf (ω) is repeated there is an ’extra’ copy of the spectrum. This part of the spectrum is

called the spectral image.
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General case: An L-fold up-sampler, represented by the diagram,

L x(n) y(n)

is defined as

y(n) = [↑ L]x(n) =

{
x(n

L
) when n is a multiple of L

0, otherwise
(A.21)

The L-fold up-sampler simply inserts L − 1 zeros between samples. For example, if the

sequence x(n)

x(n) = {. . . , 3, 5, 2, 9, 6, . . .}

is up-sampled by a factor L = 4, the result is the following sequence

y(n) = [↑ 4]x(n)

= {. . . , 0, 3, 0, 0, 0, 5, 0, 0, 0, 9, 0, 0, 0, 6, 0 . . .}

Similarly, we have

Y (z) = Z{[↑ L]x(n)} = X(zL) (A.22)

Y (ejω) = X(ejLω) (A.23)

Y f (ω) = DTFT{[↑ L]x(n)} = Xf (Lω) (A.24)

The L-fold up-sampler will create L − 1 spectral images. For example, when a signal is

up-sampled by 4, there are 3 spectral images as shown in the following figure (Fig. A.3).

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Xf (ω
)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ω / π

Yf (ω
) =

 X
f (L

ω)

FIGURE A.3. Upsampling by a factor of 4: Spectrum of the original signal x(n) and the resulting
3 compressed spectral replicas.
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Remarks

1. No information is lost when a signal is up-sampled.

2. The up-sampler is a linear but not a time-invariant system.

3. The up-sampler introduces spectral images.
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A.4 Cubic Spline Interpolation

The simplest piecewise polynomial approximation is piecewise linear interpolation which

consists of joining a set of data points

{(x0, f(x0)), (x1, f(x1)), . . . , (xn, f(xn))} (A.25)

by a series of straight lines. Using linear function approximation is sometimes not good

enough as there is no differentiability at the endpoints of the subintervals and that also

means the interpolating function is not smooth. Usually smoothness is required so the

approximating function must be continuously differentiable.

The simplest type of differentiable piecewise polynomial function on an entire interval

[x0, xn] is the function obtained by fitting one quadratic polynomial between each suc-

cessive pair of nodes. The most common piecewise polynomial approximation uses cubic

polynomials between each successive pair of nodes and is called cubic spline interpolation.

A general cubic polynomial involves four constants so there is sufficient flexibility to en-

sure that the interpolant is not only continuously differentiable on the interval but also

has a continuous second derivative. The cubic spline does not assume that the derivatives

of the interpolant agree with those of the function it is approximating, even at the nodes.

Definition Given a function f defined on [a, b] and a set of nodes a = x0 < x1 . . . <

xn = b, a cubic spline interpolant S for f is a function that satisfies the following condi-

tions:

(a) S(x) is a cubic polynomial denoted by Sj(x) on the subinterval [xj, xj+1] for

each j = 0, 1, . . . , n − 1;

(b) S(xj) = f(xj) for each j = 0, 1, . . . , n − 1;

(c) Sj+1(xj+1) = Sj(xj+1) for each j = 0, 1, . . . , n − 2;

(d) S ′
j+1(xj+1) = S ′

j(xj+1) for each j = 0, 1, . . . , n − 2;

(e) S ′′
j+1(xj+1) = S ′′

j (xj+1) for each j = 0, 1, . . . , n − 2;

(f) One of the following sets of boundary conditions is satisfied

i. S ′′(x0) = S ′′(xn) = 0 (free or natural boundary)

ii. S ′(x0) = f ′(x0) and S ′(xn) = f ′(xn) (clamped boundary)

There are other forms of cubic splines defined with other boundary conditions. When

the free boundary conditions occur the spline is called a natural spline and its graph

approximates the shape that a long flexible rod would bend to if forced to go through
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the data points {(x0, f(x0)), (x1, f(x1)), . . . , (xn, f(xn))}. In general clamped boundary

conditions lead to more accurate approximations since they include more information

about the function. For this type of boundary condition it is necessary to have either the

values of the derivatives at the endpoints or an accurate approximation to those values.

For the construction of the cubic spline interpolant for a given function f the conditions

in the definition are applied to the cubic polynomials of the form

Sj(x) = aj + bj(x − xj) + cj(x − xj)
2 + dj(x − xj)

3, (A.26)

for each j = 0, 1, . . . , n − 1.

Since Sj(xj) = aj = f(xj) condition (c) can be applied to obtain

aj+1 = Sj+1(xj+1) = Sj(xj+1) = aj + bj(xj+1 − xj) + cj(xj+1 − xj)
2 + dj(xj+1 − xj)

3,

for each j = 0, 1, . . . , n − 2.

Since the terms xj+1 − xj are used repeatedly it is convenient to write it as

hj = xj+1 − xj,

for each j = 0, 1, . . . , n − 1. If we define an = f(xn), then the equation

aj+1 = aj + bjhj + cjh
2
j + djh

3
j (A.27)

holds for each j = 0, 1, . . . , n − 1.

In a similar manner define bn = S ′(xn) and observe that

S ′
j(x) = bj + 2cj(x − xj) + 3dj(x − xj)

2 (A.28)

implies S ′
j(xj) = bj, for each j = 0, 1, . . . , n − 1. Applying condition (d) gives

bj+1 = bj + 2cjhj + 3djh
2
j , (A.29)

for each j = 0, 1, . . . , n − 1.

Another relationship between the coefficients of Sj is obtained by defining cn = S ′′(xn)/2

and applying condition (e). Then for each j = 0, 1, . . . , n − 1,

cj+1 = cj + 3djhj (A.30)

Solving for dj in Eq. (A.30) and substituting this value into Eq. (A.27) and Eq. (A.29)

gives for each j = 0, 1, . . . , n − 1, the new equations

aj+1 = aj + bjhj +
h2

j

3
(2cj + cj+1) (A.31)
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and

bj+1 = bj + hj(cj + cj+1) (A.32)

The final relationship involving the coefficients is obtained by solving the appropriate

equation in the form of Eq. (A.31), first for bj,

bj =
1

hj

(aj+1 − aj) − hj

3
(2cj + cj+1) (A.33)

and then with a reduction of the index for bj−1 we get

bj−1 =
1

hj−1

(aj − aj−1) − hj−1

3
(2cj−1 + cj)

Substituting these values into Eq. (A.32), with the index reduced by one gives the linear

system of equations

hj−1cj−1 + 2(hj−1 + hj)cj + hjcj+1 =
3

hj

(aj+1 − aj) − 3

hj−1

(aj − aj−1) (A.34)

for each j = 1, 2, . . . , n − 1. This system involves only the {cj}n
j=0 as unknowns since the

values of {hj}n−1
j=0 and {aj}n

j=0 are given, respectively by the spacing of the nodes {xj}n
j=0

and the values of f at the nodes.

When the values of {cj}n
j=0 are found it is a simple matter to find the remainder of

the constants {bj}n−1
j=0 from Eq. (A.33) and {dj}n−1

j=0 from Eq. (A.30) and to construct the

cubic polynomials {Sj(x)}n−1
j=0 .

A big question that arises with this construction is whether the values of {cj}n
j=0 can be

found using the system of equations given in Eq. (A.34) and if so whether these values are

unique. The following theorems indicate that this is the case when either of the boundary

conditions given in part (f) of the definition are imposed. The proofs of these theorems

can be found in Chapter 6 of [9].

Theorem A.4.1 If f is defined at a = x0 < x1 . . . < xn = b, then f has a unique

natural spline interpolant S on the nodes x0, x1, . . . , xn; that is a spline interpolant that

satisfies the boundary conditions S ′′(a) = 0 and S ′′(b) = 0.

Proof The boundary conditions in this case imply that cn = S ′′(xn)/2 = 0 and that

S ′′(x0) = 2c0 + 6d0(x0 − x0) = 0

so c0 = 0.

The two equations c0 = 0 and cn = 0 together with the equations in Eq. (A.34) produce

a linear system described by the vector equation Ax = b, where A is an (n + 1) by n + 1

matrix.
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A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 . . . . . . 0

h0 2(h0 + h1) h1
. . .

...

0 h1 2(h1 + h2) h2
. . .

...
...

. . . . . . . . . . . . 0
...

. . . hn−2 2(hn−2 + hn−1) hn−1

0 . . . . . . 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and b and x are the vectors

b =

⎡
⎢⎢⎢⎢⎢⎣

0
3
h1

(a2 − a1) − 3
h0

(a1 − a0)
...

3
hn−1

(an − an−1) − 3
hn−2

(an−1 − an−2)

0

⎤
⎥⎥⎥⎥⎥⎦ and x =

⎡
⎢⎢⎢⎣

c0

c1
...
cn

⎤
⎥⎥⎥⎦

Matrix A is strictly diagonally dominant and it satisfies the hypotheses of Theorem

6.19 in Chapter 6 of [9]. Therefore the linear system has a unique solution for c0, c1, . . . , cn

The solution to the cubic spline problem with the boundary conditions S ′′(x0) =

S ′′(xn) = 0 can be obtained by applying Algorithm 3.4 (Chapter 3 of [9]).
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Appendix B

Image Coding

Images have their information encoded in the spatial domain, the image equivalent of

the time domain. A digital image is a set of N × M values each representing a picture

element (pixel). The value of each pixel is a sampled representation of an 1
N
× 1

M
. The

pixel value is represented in a bit depth integer value corresponding to the luminance of

the physical area of the pixel for black-white images, or a set of integer values for colour

components such as the (R,G,B) space for the same pixel area.

The limiting factor for displaying a digital image is the number of integers needed to

describe an image. Suppose for a 1000 × 1000 pixels RGB colour image coded on 8 bits

per component,we need almost 8 megabytes of memory. Thus it’s necessary to compress

the image so as to represent the same sequence of pixels with the least number of bits

possible. Image coding techniques can be classified into two classes namely lossless and

lossy techniques. Lossless techniques (e.g. TIFF and GIF format), represent the exact set

of pixels in the minimum number of bits. Lossy techniques (e.g. JPEG format) do not

represent the exact pixel values but only give a good approximation of them.

Image Types

This section describes the basic types of images which can be represented in MATLAB

[85]. The image is often presented as a two-dimensional function f(x,y), where x,y - are

spatial coordinates.

Indexed Images

An indexed image (Fig. B.1) consists of a data matrix, X and a colormap matrix, map.

map is an m-by-3 array of class double containing floating-point values in the range (0,1).

To display an indexed image with imshow function, you specify both the image matrix

and the colormap.

imshow(X, map)

For each pixel in X, imshow displays the color stored in the corresponding row of map.

The value 1 points to the first row in the colormap, the value 2 points to the second row,

and so on.
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X=[1 4 5;

3 2 6;

7 8 9];

%colormap

M=[0 0 0; %black

1 1 1; %white

1 0 0; %pure red

0 0 1; %blue

0 1 0; %green

0 0 0; %black

1 1 1; %white

1 0 0; %pure red

0 0 1];%blue

imshow(X,map,’notruesize’);

column 

row 

FIGURE B.1. Indexed image FIGURE B.2. Intensity image

Intensity Images

An intensity image (Fig. B.2) is a data matrix, I, whose values represent intensities

within some range. To display a grayscale intensity image, the syntax is:

imshow(I)
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imshow displays the image by scaling the intensity values to serve as indices into a

grayscale colormap whose values range from black to white. You can explicitly specify the

number of gray levels with imshow, normally the number of levels of gray in the colormap

is 256 on systems with 24-bit color, and 64 on other systems.

%Intensity image-grayscale

I=[0 0.20 0.30 0.40 0.50 0.60 ;

0.70 0.80 1 0.20 0.20 0 ;

0. 0.25 0 0.25 0 0.25 ;

0.25 1.00 0.25 0 0.60 0 ];

figure,

%256 gray levels

imshow(I,256,’notruesize’);

Binary Images

A binary image (Fig. B.3) is stored as a two-dimensional matrix of 0’s and 1’s. To

display a binary image, the syntax is:

imshow(BW)

The 0 values in the image matrix BW display as black, and the 1 values display as white.

%Binary image

BW=[1 0 1 0 1;

0 1 0 1 0;

1 0 1 0 1];

figure, imshow(BW,’notruesize’);

RGB Images

An RGB image (Fig. B.4), sometimes referred to as a ’truecolor’ image, is stored in

MATLAB as an m-by-n-by-3 data array that defines red, green, and blue color components

for each individual pixel. RGB images do not use a palette (colormap). The color of each

pixel is determined by the combination of the red, green, and blue intensities stored in

each color plane at the pixels location. To display an RGB image, the syntax is:

imshow(RGB)

For each pixel (r,c) in RGB, imshow displays the color represented by the triplet (r,c,1:3).

An RGB image array can be of class double, uint8, or uint16:
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• If the array is of class double, the data values are in the range [0, 1].

• If the array is of class uint8, the data range is [0, 255].

• If the array is of class uint16, the data range is [0, 65535].

%RGB image

RGB(:,:,1)=[0.44 0.75 0.25 0.77 ;

0.78 0.32 0.13 0.11 ;

0.61 0.23 0.19 0.87];

RGB(:,:,2)=[0.59 0.44 0.92 0.45 ;

0.98 0.41 0.35 0.32 ;

0.71 0.31 0.67 0.78];

RGB(:,:,3)=[0.66 0.22 0.33 0.22 ;

0.13 0.81 0.73 0.24 ;

0.54 0.64 0.66 0.52];

figure, image(RGB);

Multiframe Image Arrays

These are used for applications,where one may need to work with collections of images

related by time or view, such as magnetic resonance imaging (MRI) slices or movie frames.

The MRI data typically contains a number of slice planes taken through a volume, such

as the human body. To display a multiframe indexed image, the syntax is:

%Displaying 20 slices

column 

row 

FIGURE B.3. Binary image

column 

row 

FIGURE B.4. RGB image
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for i=1:20

mri=[’p_0’,num2str(i),’.mat’];

load(mri)

A1(:,:,1,i)=A;

end

montage(A1) brighten(0.6)

FIGURE B.5. Multi-frame indexed image - MRI slices
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Appendix C

Remote Image Processing Using MATLAB
Web Server

The implementation of the MWS with the goal of its use for biomedical image pro-

cessing - remote image processing is to be discussed. MWS integrates the graphical and

computational capabilities of MATLAB with a remote access through the Internet. MAT-

LAB toolboxes provide a range of algorithms that enable image processing by different

mathematical methods including the discrete wavelet transform. The design of a graphical

user’s interface enables the choice of input parameters and presentation of the results.

A key application of modern educational technology is e-learning with a web-based

approach using for example a MATLAB Web Server (MWS) application. MWS [86] allows

clients (users) to run MATLAB applications remotely over the internet. Clients interact

with MATLAB over a network with a TCP/IP protocol. This interaction takes place

through HTML forms which serve as graphical interfaces for the application. This not

only allows users to use MATLAB based tools without any prior MATLAB programming

knowledge but it also prevents unauthorized user access to source code. Fig. C.1 shows

the interaction between clients and MWS.

Implementation of the Matlab Web Server

The MATLAB application resides on the server machine and the components of the

MWS [86] include:

• matlabserver TCP/IP server running MATLAB continuously.

• matweb.exe common gateway interface (CGI) program that resides on the HTTP

server and communicates with matlabserver. matweb requires information found

in matweb.conf to locate matlabserver. An instance of matweb.conf looks like

[mri2D]

mlserver=atlas

mldir=H:/PHOBOS/MUSOKOV/m

where mlserver is the name of host running matlabserver and mldir is the working

directory for reading m-files or save any generate any graphics writing files.



134 Appendix C. Remote Image Processing Using MATLAB Web Server

http daemon

matweb

matlabserver

MATLAB

M-files
Data

Initial 
HTML form

Output 
HTML form

Initial 
HTML form

Output 
HTML form

Graphics

Client 1 Client n

. . . . .

FIGURE C.1. How MATLAB operates on the web

• Input HTML form data functions MATLAB utility functions that retrieve data

from input HTML documents and then provide that data in a form convenient to

MATLAB programmers.

• Output HTML document functions MATLAB functions for inserting MATLAB

data into template HTML forms for return transmission to the end users Web

browser.

There are three files associated with an mri2D function http : //dsp.vscht.cz/musoko:

• mri2D input.html: the mri2D input document

• mri2D output.html: the mri2D output document

• mri2D.m: the mri2D MATLAB m-file

Looking at the source from the mri2D plot.html file there is a line

<input type="hidden" name="mlmfile" value="mri2D">

that sets the argument mlmfile to the value mri2D. The mlmfile argument contains the

name of the MATLAB m-file to run. matlabserver uses the value of mlmfile obtained

from the matweb, to run the MATLAB application. mri2D takes the input data from
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mri2D input.html, carries out the de-noising application and outputs the results using

mri2D outpt.html as a template.

The mri2D function uses the htmlrep command to place the computed graphics into

the mri2D output.html output template using the code

templatefile = which(’mri2D_output.html’);

rs = htmlrep(s, templatefile);

where s is a MATLAB structure containing the results of the mri2D computation. htmlrep

extracts data from s and replaces variable fields in mri2D output.html with the results

of the MATLAB computation. The completed mri2D output.html form is transmitted

to the user’s browser. In examining some parts of the mri2D and mri3D code, we will see

how to include MATLAB graphics as part of a MATLAB Web Server application. The

input document allows us to set the characteristics of the MRI plot we want to generate.

The code in the source file

<form action="/cgibin/matweb.exe" method="POST"

target="outputwindow">

<input type="hidden" name="mlmfile" value="mri2D">

calls the mri2D function and targets the output to a frame on the lower portion of the

input document itself. In mri2D.m the code

mlid = getfield(h,’mlid’)

extracts mlid from the structure h. mlid is a unique identifier that matlabserver pro-

vides. Using the value of mlid to construct filenames ensures that filenames are unique.

The code

s.graf1 = sprintf(’../icons/%smri2D.jpeg’, mlid);

creates a name for a graphic (jpeg) file and save the files in the directory /icons.

The function htmlrep replaces MATLAB variable names it finds in the HTML output

template file mri2D output.html with the values in the input structure s in our case

graph1.

templatefile = which(’mri2D_output.html’);

rs = htmlrep(s, templatefile);

From the mri2D output.html, $graph1$, the variable that represents the graphic output,

is found in the line
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<img border=0 src="$graph1$">

An example of how of one level image processing of a noisy MR image slice is shown in

Fig. C.2 on an internet browser. In our demonstration the client has to select the type of

data to be loaded, the number of levels and threshold value for de-noising of a noisy MRI

slice.

FIGURE C.2. 2-D Biomedical image processing.
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Appendix D

Selected Algorithms in MATLAB

In this section, I provide the implementation and examples of the algorithms I have

used in the thesis. The algorithms were implemented numerically as MATLAB functions

(scripts) and these programs were used to create the various examples and figures in this

thesis. This form of implementation is computationally more efficient and enables exper-

imentation on the multi-dimensional signal data. The software, along with supporting

documents, is made available on the following web address: http : //dsp.vscht.cz.

D.1 Volume Visualization

%------------------------------------

% 3-D BIOMEDICAL VISUALIZATION

%------------------------------------

clear,close all,clc

% loading image slice data into a 3D array

for i=1:70

load([’../data/p_0’,num2str(i),’.mat’]);

A=A(:,65:448);

A1(:,:,i)=A;

end

% 4-D array squeezed to 3D

A2 = squeeze(A1);

% Extracting subset of volume data set

[x,y,z,A2] = subvolume(A2,[200,300,100,nan,nan,nan]);

p1 = patch(isosurface(x,y,z,A2, 5),...

’FaceColor’,’none’,’EdgeColor’,’none’);

isonormals(x,y,z,A2,p1); p2 = patch(isocaps(x,y,z,A2, 5),...

’FaceColor’,’interp’,’EdgeColor’,’none’);

view(3); axis tight; axis on; daspect([1,1,.4]);

xlabel(’x-pixel co-ordinate’)

ylabel(’y-pixel co-ordinate’)

zlabel(’slice no.’)

colormap(gray(100)) brighten(0.7)
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D.2 2-D MR Image Visualization

% ----------------------------------------------

% 2-D MR IMAGE VISUALIZATION

% ----------------------------------------------

clear, close all, clc

% Load MRI datta

for i=1:70

mri=[’../data/p_0’,num2str(i),’.mat’];

load(mri)

D(:,:,1,i)=A;

end

% Display all the slices in one figure

figure(1)

montage(D(:,:,1,10:29));

% title(’70 MRI Slices’)

brighten(0.6)

% Display image slice no. 40

slice_40=D(:,:,:,40);

figure(2)

imshow(slice_40)

title(’MR IMAGE SLICE’)

brighten(0.7)

% Show all frames of MRI data as a movie

% figure

% immovie(D)

% Sagittal slice image of the MR brain image

D=squeeze(D); % 4-D to 3-D

slice=D(:,200,:);

sagittal_slice_2D = squeeze(slice);

sagittal_slice = rot90(sagittal_slice_2D);

figure(3);

h1=axes(’Position’,[0.03 0.4 0.3 0.4]);

imagesc(D(:,:,40))

title(’{\bf (a)} AXIAL SLICE’)

axis off

h2=axes(’Position’,[0.35 0.4 0.3 0.4]);

imagesc(sagittal_slice);

title(’{\bf (b)} SAGITTAL SLICE’)

axis off
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% Coronal slice image of the MR brain image

slice=D(300,:,:);

coronal_slice_2D = squeeze(slice);

coronal_slice = rot90(coronal_slice_2D);

h3=axes(’Position’,[0.67 0.4 0.3 0.4]);

imagesc(coronal_slice);

title(’{\bf (c)} CORONAL SLICE’)

colormap gray

axis off

brighten(0.7)

% Interpolation of the coronal slice

a=double(coronal_slice);

b=imrescale(a,4,’linear’); % linear interpolation

c=imrescale(a,4,’spline’); % spline interpolation

d=imrescale(a,4,’cubic’); % cubic intepolation

function b=imrescale(X,factor,method)

% IMGRESCALE rescales raw image data using different types of interpolation.

% G = IMGRESCALE(X, FACTOR, METHOD) Rescales image data by a scale

% factor and interpolation double arrays are supported

% INPUTS:

% X - original image

% factor - the scale factor by which the image is to be rescaled method

% ’linear’ - Bilinear interpolation

% ’spline’ - Cubic spline interpolation

% ’cubic’ - Bicubic interpolation

% OUTPUT:

% b - rescaled image

if ~isa(X, ’double’)

X=double(X);

end

% size of the original image

[m,n]=size(X);

% scaling factor

factor=1/factor;

% sampling grid coordinates

[xi,yi]=meshgrid(1:factor:n,1:factor:m);

% 2-D Interpolation

b=interp2(X,xi,yi,method);
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D.3 Wavelet Decomposition

% ------------------------------------

% 1-D SIGNAL DECOMPOSITION

% ------------------------------------

clear, close all

% simulated signal

N=256; n=0:256;

s=sin(2*pi*0.02*n)+rand(1,N+1);

figure(1);

h1=axes(’Position’,[0.07 0.72 0.9 0.23]);

plot(s,’r’);

grid on; axis tight;

title(’{\bf (a)} GIVEN SIGNAL’)

% Decomposition parameters definition

level=3;

wavelet=’db2’;

% 1-D DWT decomposition

[c,l]=wavedec(s,level,wavelet);

h3=axes(’Position’,[0.07 0.39 0.9 0.23]);

stem(c,’g’);

grid on; axis tight; v=axis;

title([’{\bf (b)} WAVELET COEFFICIENTS: LEVELS 1-’,num2str(level)])

ylabel([’WAVELET: ’,wavelet])

% decomposition subands

ind(1)=0;

for i=1:level+1

ind(i+1)=sum(l(1:i));

line([ind(i+1); ind(i+1)],[v(3);v(4)],’Linewidth’,2)

end

% scalogram

N=length(s);

S=zeros(level,N);

for k=1:level

d=detcoef(c,l,k); d=d(ones(1,2^k),:);

S(k,:)=wkeep(d(:)’,N);

end

h4=axes(’Position’,[0.07 0.06 0.9 0.23]);

colormap(pink(64));

img=image(flipud(wcodemat(S,64,’row’)));

title(’{\bf (c)} SIGNAL SCALOGRAM’); ylabel(’Level’)
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D.4 Discrete Fourier Transform De-noising

% -----------------------------------------

% FILTERING IN THE FREQUENCY DOMAIN

% -----------------------------------------

N=64; M=64;

% 2D signal

for m=1:M

for n=1:N

x(n,m)=sin(0.2*n)+sin(1.6*n);

end

end

figure(1)

subplot(221)

imshow(x);

title(’{\bf (a)} SIMULATED IMAGE’)

axis tight

subplot(222)

mesh(x);

xlabel(’m’);ylabel(’n’);axis tight

title(’{\bf (b)} 3-D PLOT OF THE SIMULATED IMAGE DATA’)

% 2D FFT

% x=x-mean(x(:)); % get rid of the DC component

X=fft2(x);

X=fftshift(X);

subplot(223);

mesh([0:n-1]/n-0.5,[0:m-1]/m-0.5,abs(X));

xlabel(’F1’);ylabel(’F2’)

title(’{\bf (c)} 2-D FOURIER SPECTRUM’);hold on

% window function

W=zeros(N,N);

W(14*2:18*2,14*2:18*2)=1;

% Spectrum modification by windowing method

Y=X.*W;

mesh([0:n-1]/n-0.5,[0:m-1]/m-0.5,W*600+1400);

set(gca,’XLim’,[-0.5 0.5],’YLim’,[-0.5 0.5],’ZLim’,[0 2000])

hold off

% 2D inverse FFT

y=ifft2(ifftshift(Y));

subplot(224);

mesh(real(y));

xlabel(’m’);ylabel(’n’);

axis tight

title(’{\bf (d)} FILTERED IMAGE DATA’)
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D.5 Short Time Fourier Transform

% ------------------------------------

% SHORT TIME FOURIER TRANSFORM

% ------------------------------------

clear,close all,clc

T=1; % sampling time

fs= 1/T; % sampling freq.

N=512; % no. of samples

t=[0:N-1]’; % N secs at 1Hz sample rate

% sinusoidal signal x(t) with f1 at time interval t1

% and f2 at time interval t2

f1=0.1; % freq. 1

f2=0.35; % freq. 2

t1=[1:floor(N/2)]’;

t2=[floor(N/2):N]’;

x=zeros(N,1);

x(t1)= sin(2*pi*f1*t1);

x(t2)= sin(2*pi*f2*t2);

% FFT magnitude of the signal

Y=abs(fft(x));

n= 0:N-1;

% time interval in sec.

t = n*T;

fnorm= (n/N)*fs; % normalized freq

f = fnorm * fs; % frequencies

half = 1:(N/2); % half the number of samples

figure(1)

h=axes(’Position’,[0.07 0.6 0.4 0.35]);

plot(t,x);

xlabel(’Time [s]’);

grid on

title(’{\bf (a)} ANALYSED SIGNAL’)

axis tight

h=axes(’Position’,[0.57 0.6 0.4 0.35]);

% amplitude spectrum

plot(fnorm(half), Y(half),’b’)

xlabel(’Frequency [Hz]’)

ylabel(’Magnitude’)

title(’{\bf (b)} SPECTRUM OF THE ANALYSED SIGNAL’)

grid on
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% SHORT TIME FOURIER TRANSFORM

M=32; % length of window

for j=1:floor(N/M)

X(:,j)=x((j-1)*M+1:j*M);

end

X=abs(fft(X));

X=X([1:M/2],:);

[m1,n1]=size(X);

% 2-D Spectrogram

h4=axes(’Position’,[0.57 0.1 0.4 0.35]);

imagesc([1:n1]*fs*M,[0:m1-1]*fs/M,X)

axis xy

xlabel(’Time [s]’);

ylabel(’Frequency [Hz]’)

title([’{\bf (d)} 2D SPECTROGRAM’]);

axis tight

brighten(0.99)

colormap(pink(64));

% 3-D Spectrogram

axes(’Position’,[0.07 0.1 0.4 0.35]);

mesh([1:n1]*fs*M,[0:m1-1]*fs/M,X)

xlabel(’Time [s]’);

ylabel(’Frequency [Hz]’)

title([’{\bf (c)} 3D SPECTROGRAM’]);

axis tight

colormap(pink(64));
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D.6 2-D Wavelet De-noising

% -------------------------------------------

% 2-D DWT DE-NOISING

% -------------------------------------------

clear,clc,close all

i=menu(’IMAGE’,’SIMULATED 2-D IMAGE’,’2-D MRI IMAGE’,’Exit’);

if i==1

n=[0:0.5:63.5]’;

% simulated image data

x=sin(0.6*n)*sin(0.6*n’);

x=(x-min(min(x)))/(max(max(x))-min(min(x)));

A2=x;

A2=(A2-min(A2(:)))/(max(A2(:))-min(A2(:)));

% noisy image

A2n=rnoise2D(A2);

A2n=A2n(1:64,1:64);

A2=A2(1:64,1:64);

elseif i==2

i=50;

load([’../../data/p_0’,num2str(i),’.mat’]);

% pixel values

x=100;dx=228;

y=100;dy=228;

% uint16--->double

A=im2double(A);

%subimage

A2=A(x:dx-1,y:dy-1);

A2n=rnoise2D(A2);

else

break

end

% noisy image data

x=A2n;

% Array dimensions of the original image

[m n]=size(A2);

% wavelets

i=menu(’WAVELET’,’db1(Haar)’,’db2’,’db4’,’sym2’,’sym4’,...

’sym8’,’bior1.1’,’bior1.3’,’bior1.5’,’Exit’);

% Daubechies

if i==1

wavelet=’db1’;
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elseif i==2

wavelet=’db2’;

elseif i==3

wavelet=’db4’;

% Symlets

elseif i==4

wavelet=’sym2’;

elseif i==5

wavelet=’sym4’;

elseif i==6

wavelet=’sym8’;

% Biorthogonal

elseif i==6

wavelet=’bior1.1’;

elseif i==7

wavelet=’bior1.3’;

elseif i==8

wavelet=’bior1.5’;

else

break

end

% no. of decomposition levels

level=2;

% 2D DWT DECOMPOSITION

[W,c,l,ind]=IM_dec(x,level,wavelet);

% DETERMINATION OF THRESHOLDING VALUES FOR DIFF. TYPES OF THRESH. METHODS

j=menu(’THRESHOLD’,’GLOBAL’,’LEVEL DEPENDENT’,’OPTIMAL’);

if j==1

% global treshold

% noise standard deviation of the detail coefficients HH

x8=W(1).D(:);

stand=std( x8);

for i=2:3*level+1

lambda(i)=stand*sqrt(2*log(m*n));

end

ss=’GLOBAL THRESHOLDING’;

elseif j==2

% Level dependent treshold

% noise standard deviation using Donoho estimate

% sigmak = MAD/0.6745 Mean Absolute Deviation

w=[];

for d=level:-1:1;

w{d}{1}=W(d).H;

w{d}{2}=W(d).V;
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w{d}{3}=W(d).D;

end

for k=level:-1:1

for j=1:3

sk{k}{j}=(median(abs(w{k}{j}(:)))/0.6745)*sqrt(2*log(m*n));

end

end

% threshold values

lambda=[];

for k=level:-1:1

for j=1:3

lambda=[lambda sk{k}{j}];

end

end

lambda=[0 lambda];

ss=’LEVEL DEPENDENT THRESHOLDING’;

elseif j==3

% optimal thresholding

% threshold range

t = 0:0.01:0.4;

% MSE error values

e = den2DWT(A2,x,wavelet,level,t);

% minimum optimal threshold value

[emin,kmin] = min(e);

Tt = t(kmin);

ss=’OPTIMAL THRESHOLDING’;

% MSE curve

figure(2)

% h=axes(’Position’,[0.1 0.5 0.8 0.3]);

h4=axes(’Position’,[0.07 0.12 0.9 0.3]);

plot(t,e,’b’,’LineWidth’,1.2);grid on

title([’{\bf (d)} {\bf’,num2str(ss),’}’])

xlabel(’\lambda (threshold)’);

ylabel(’{\bf MSE}’);

for i=2:3*level+1

lambda(i)=Tt;

end

else

break

end

figure(1)

h4=axes(’Position’,[0.07 0.12 0.9 0.3]);

plot(c,’g’); grid on; hold on

set(gca,’XtickLabel’,[]); axis tight;

v=axis; dv=v(3)-0.08*(v(4)-v(3));hold on

title([’{\bf (d)} SCALING AND WAVELET COEFFICIENTS - {\bf’,num2str(ss),’}’])

ylabel([’WAVELET - {\bf’,num2str(wavelet),’}’])
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%subband lines

for i=1:3*level+1

line([ind(i+1); ind(i+1)],[v(3);v(4)],’LineWidth’,1.2);

end

text(v(1), dv, [num2str(level),’,’,’0’]);

for i=1:level

for j=1:3

text(ind(3*(i-1)+j+1), dv, [num2str(level-i+1),’,’,num2str(j)]);

end

end

% threshold lines

for i=2:3*level+1

line([ind(i);ind(i+1)],[lambda(i);lambda(i)],’LineWidth’,1.2);

line([ind(i);ind(i+1)],[-lambda(i);-lambda(i)],’LineWidth’,1.2);

end

% Soft Thresholding using the calculated threshold value T

% modifying coefficients

for i=1:3*level+1

k=find(abs(c(ind(i)+1:ind(i+1)))<=lambda(i));

k=k+ind(i); cd(k)=0;

k=find(abs(c(ind(i)+1:ind(i+1)))>lambda(i));

k=k+ind(i); cd(k)=sign(c(k)).*(abs(c(k))-lambda(i));

end

plot(cd,’r’); grid on; axis tight;

hold off

% reconstructed image

y=waverec2(cd,l,wavelet);

% figure(2)

h1=axes(’Position’,[0.07 0.5 0.28 0.4]);

imshow(x); axis tight; v=axis; title(’{\bf (a)} NOISY IMAGE’)

h2=axes(’Position’,[0.37 0.5 0.28 0.4]);

A1=IM_decshow05(W);

imshow(A1)

colormap(gray)

axis off

v=axis; title(’{\bf (b)} IMAGE DECOMPOSITION’)

h3=axes(’Position’,[0.67 0.5 0.28 0.4]);

imshow(y);

axis tight; v=axis; title(’{\bf (c)} IMAGE RECONSTRUCTION’)

brighten(0.5)
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function [W,c,l,ind]=IM_dec(S,level,wavelet);

% Image wavelet decomposition to a given level

% S ........... image matrix

% level ....... decomposition level

% wavelet ..... wavelet decomposition function

% W ........... structured variable of decomposition images belonging to

% decomposition levels

% c ........... vector of decomposition coefficients

% ind ......... vector pointing to indices of vector c defining individual

% decomposition levels

[c,l]=wavedec2(S,level,wavelet); lfull=[l(1,:)];

% Evaluation of indices dividing vector of decomposition coefficients into

% levels

lfull=[l(1,:)];

for d=level:-1:1

lfull=[lfull; ones(3,1)*l(level-d+2,:)];

end

ind=cumsum([0 prod(lfull’)]);

% Resizing of decomposition coefficients into decomposition images using

% WKEEP function to extract the middle part of convolution matrices

[m,n]=size(S); ls(level)=floor(m/2^level);

for d=level-1:-1:1;

ls(d)=ls(d+1)*2;

end

W(level).A=wkeep(reshape(c(ind(1)+1:ind(2)),lfull(1,:)),[ls(level) ls(level)]);

for d=level:-1:1; r=3*(level-d)+1;

W(d).H=wkeep(reshape(c(ind(r+1)+1:ind(r+2)),lfull(r+1,:)),[ls(d) ls(d)]);

W(d).V=wkeep(reshape(c(ind(r+2)+1:ind(r+3)),lfull(r+2,:)),[ls(d) ls(d)]);

W(d).D=wkeep(reshape(c(ind(r+3)+1:ind(r+4)),lfull(r+3,:)),[ls(d) ls(d)]);

end
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D.7 3-D Wavelet De-noising

% -------------------------------------------

% 3-D DWT DE-NOISING

% -------------------------------------------

clear,clc,close all

i=menu(’VOLUME’,’SIMULATED 3-D VOLUME’,’3-D MRI VOLUME’,’Exit’);

if i==1

n=[0:0.5:31.5]’;

% simulated data set

x=sin(0.6*n)*sin(0.6*n’);

x=(x-min(min(x)))/(max(max(x))-min(min(x)));

for i=1:8

A2(:,:,i)=x;

end

A2=(A2-min(A2(:)))/(max(A2(:))-min(A2(:)));

% random noise

Rn=rnoise_sim(A2);

A3=A2+Rn;

elseif i==2

% pixel values

x=150;dx=214;

y=100;dy=164;

% 3-D MR data set

for i = 1:8

%loading the data

load([’../../data/p_0’,num2str(i),’.mat’]);

%uint16--->double

A=im2double(A);

%saving each slice in A2

A2(:,:,i)=A(x:dx-1,y:dy-1);

end

% random noise

Rn=rnoise_sim(A2);

A3=A2+Rn;

else

break

end

% Noisy data set

x=A3;

% Array dimensions of x

[m n k]=size(x);

% wavelets
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i=menu(’WAVELET’,’db1(Haar)’,’db2’,’db4’,’sym2’,’sym4’,...

’sym8’,’bior1.1’,’bior1.3’,’bior1.5’,’Exit’);

% Daubechies

if i==1

wavelet=’db1’;

elseif i==2

wavelet=’db2’;

elseif i==3

wavelet=’db4’;

% Symlets

elseif i==4

wavelet=’sym2’;

elseif i==5

wavelet=’sym4’;

elseif i==6

wavelet=’sym8’;

% Biorthogonal

elseif i==6

wavelet=’bior1.1’;

elseif i==7

wavelet=’bior1.3’;

elseif i==8

wavelet=’bior1.5’;

else

break

end

% no. of decomposition levels

level=1;

% analysis and synthesis filter coefficients

[af,sf]=waveletfn(wavelet);

% 3D DWT

w = dwt3D(x, level, af);

% wavelet coefficients

c=[w{level+1}(:)];

for i=level:-1:1

for j=1:7

% [LLL LLH LHL LHH HLL HLH HHL HHH]

c=[c;w{i}{j}(:)];

end

end

% LLL LLH; LHL LHH

L1=[w{2} w{1}{1};w{1}{2} w{1}{3}];
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% HLL HLH; HHL HHH

H2=[w{1}{4} w{1}{5};w{1}{6} w{1}{7}];

% 3-D decomposed volume

yd=cat(3,H2,L1);

yd=(yd-min(yd(:)))/(max(yd(:))-min(yd(:)));

% partition lines

yd(m/2,:,:)=100;

yd(:,n/2,:)=100;

yd(:,:,k/2)=100;

% DETERMINATION OF THRESHOLDING VALUES FOR DIFF. TYPES OF THRESH. METHODS

j=menu(’THRESHOLD’,’GLOBAL’,’LEVEL DEPENDENT’,’OPTIMAL’);

if j==1 % GLOBAL THRESHOLDING

% global treshold values

% noise standard deviation of the detail coefficients HHH

x8=w{1}{7}(:);

stand=std( x8);

Tn=stand*sqrt(2*log(m*n*k))*2^(-0.5);

% indexed cell array

Tind= cell(1,7);

for i=1:7

Tt{i}=Tn;

end

for i=level:-1:1

T{i}=Tt;

end

elseif j==2 % LEVEL DEPENDENT THRESHOLDING

% Level dependent treshold values

% noise standard deviation using Donoho estimate

% sigma = MAD/0.6745 Mean Absolute Deviation

for i=level:-1:1

for j=1:7

T{i}{j}=(median(abs(w{i}{j}(:)))/0.6745)*sqrt(2*log(m*n*k));

end

end

elseif j==3 % OPTIMAL THRESHOLDING

% optimal thresholding values

% threshold range

t = 0:0.05:0.7;

% MSE error values

e = den3DWT(A2,x,wavelet,level,t);

[emin,kmin] = min(e);

% minimum optimal threshold value
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Tt = t(kmin);

% MSE curve

figure(2)

h=axes(’Position’,[0.1 0.5 0.8 0.3]);

plot(t,e,’b’,’LineWidth’,1.2);grid on

xlabel(’\lambda (threshold)’);

ylabel(’{\bf MSE}’);

% indexed cell array

Tind= cell(1,7);

for i=1:7

Tt{i}=Topt;

end

for i=level:-1:1

T{i}=Tt;

end

else

break

end

figure(1)

h4=axes(’Position’,[0.07 0.2 0.925 0.3]);

plot(c,’g’); grid on; hold on; %axis tight

set(gca,’XtickLabel’,[]);

v=axis;

ylabel([’WAVELET - {\bf’,num2str(wavelet),’}’])

title([’{\bf (d)} WAVELET COEFFICIENTS - {\bf’,num2str(ss),’}’]);

% representation of wavelet coeff. 8 sub-divisions

ll=[];

for j=1:level

ll=[(m/(2^j))*(n/(2^j))*(k/(2^j)) ll];

end

% no. of coefficients in each subband

Nc=[];

for j=1:level

Nc=[Nc ll(j)*ones(1,8)];

end

ll=Nc;

ind(1)=0;

block={’LLL’ ’LLH’ ’LHL’ ’LHH’ ’HLL’ ’HLH’ ’HHL’ ’HHH’};

for i=1:7*level+1

ind(i+1)=sum(ll(1:i));

line([ind(i+1); ind(i+1)],[v(3);v(4)],’LineWidth’,1.2);

% text(ind(i)+1000,-1.30,block{i}); %sim. model
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text(ind(i)+1200,-1.20,block{i});

end

% Soft Thresholding using the calculated threshold value T

V=[];

% looping the scales

for j = level:-1:1

% looping the subbands

for s = 1:7

w{j}{s} = soft(w{j}{s},T{j}{s});

V=[V T{j}{s}];

end

end

lambda=[0 V]; % lambda(1)=0 approximation coeffiecients not thresholded

% lambda(1)=0;

for i=2:7*level+1

lambda(i)=abs(lambda(i));

line([ind(i);ind(i+1)],[lambda(i);lambda(i)],’LineWidth’,1.2)

line([ind(i);ind(i+1)],[-lambda(i);-lambda(i)],’LineWidth’,1.2)

end

% modified coefficients

cnew=[w{level+1}(:)];

for i=level:-1:1

for j=1:7

cnew=[cnew;w{i}{j}(:) ];

end

end

% axes(h4)

plot(cnew,’r’); grid on; axis tight;

hold off

% reconstructed image volume

y = idwt3D(w, level, sf);

% 3D view

az=-38;

el=14;

h1=axes(’Position’,[-0.05 0.6 0.4 0.2]);

model3_sim(x); axis tight; v=axis; title(’{\bf (a)} NOISY VOLUME’)

view(az,el)

h2=axes(’Position’,[0.295 0.6 0.4 0.2]);
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model3_sim(yd); axis tight; v=axis;

title(’{\bf (b)} 3-D DECOMPOSITION’)

view(az,el)

h3=axes(’Position’,[0.64 0.6 0.4 0.2]);

model3_sim(y); axis tight; v=axis;

title(’{\bf (c)} RECONSTRUCTED MODEL’)

view(az,el)

function y = denDWT3D(x,wavelet,level,T)

% denDWT3D - thresholding denoising using the 3-D DWT

% x ......... noisy image volume

% wavelet ... type of wavelet (’haar’,’db2’,’sym4’,..)

% level ..... no. of levels

% T ......... threshold value

% y ......... de-noised image volume

% analysis and synthesis filter coefficients

[af,sf]=waveletfn(wavelet);

% 3-D DWT

w = dwt3D(x,level,af);

% looping decomposition levels

for j = 1:level

% looping subbands

for s = 1:7

w{j}{s} = soft(w{j}{s},T);

end

end

% reconstruction

y = idwt3D(w,level,sf);
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D.8 2-D Complex Wavelet Transform Denoising

Filters used to implement DT-DWT uses Selesnick’s Dual-Tree DWT available from:
http : //taco.poly.edu/selesi/
% -------------------------------

% 2-D DT CWT - DE-NOISING

% -------------------------------

clear,close all,clc

% loading the image data

load p_050.mat

randn(’state’,0)

% subimage

s=(A(100:227,100:227));

% converting the uint8 to double

s=im2double(s);

% random noise addition

x=s+0.05*randn(size(s));

% Threshold range

t = 0:0.005:0.1;

%2D DWT method

wavelet=’db2’;

level=2;

e = den2DWT(s,x,wavelet,level,t);

% 2-D DT CWT method

J=4;

re = den2DTCWT(s,x,J,t);

figure(1)

plot(t,e,’b’,’LineWidth’,1.2)

hold on

plot(t,re,’r’,’LineWidth’,1.2)

axis([0 0.1 0.7e-3 e(1)])

grid on

% axis tight

xlabel(’\lambda (Threshold)’);

ylabel(’MSE’);

legend(’DWT’,’DT CWT’,0);

hold off

% Finding the optimal minimum threshold value

% DWT
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[emin,k] = min(e);

T = t(k);

% DT CWT

[emin1,k1] = min(re);

T1 = t(k1);

% De-noising - DWT

y = denDWT(x,wavelet,level,T);

% Denoising - DT CWT

y1 = denDTCWT(x,J,T1);

% MSE and MAE

[MSEn,MAEn]=imgdnoise(s,x)

[MSE1,MAE1]=imgdnoise(s,y)

[MSE2,MAE2]=imgdnoise(s,y1)

% PSNR

PSNRn=psnr(s,x)

PSNR1=psnr(s,y)

PSNR2=psnr(s,y1)

figure(2)

% Original image

s = histeq(s);

% Noisy image

x = histeq(x);

y = histeq(y);

y1 = histeq(y1);

axes(’Position’,[0.1 0.55 0.45 0.4]);

imshow(s)

title(’{\bf (a)} ORIGINAL IMAGE’)

axes(’Position’,[0.41 0.55 0.45 0.4]);

imshow(x)

title(’{\bf (b)} NOISY IMAGE’)

axes(’Position’,[0.1 0.08 0.45 0.4]);

imshow(y)

title(’{\bf (c)} DE-NOISED IMAGE - DWT’)

axes(’Position’,[0.41 0.08 0.45 0.4]);

imshow(y1)

title(’{\bf (d)} DE-NOISED IMAGE - DT CWT’)
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function y = denDTCWT(x,level,lambda)

% denDTCWT - thresholding denoising using the 2-D DTCWT

% x ......... noisy image

% level ..... no. of decomposition levels

% lambda .... threshold value

% y ......... de-noised image

% First stage filter coefficients

[Faf, Fsf] = FSfilt;

% Remaining stage filter coefficients

[af, sf] = dualfilt1;

% 2-D DT CWT

w = dualtree2D(x,level,Faf,af);

% Soft thresholding

for j = 1:level

% looping the subbands

for s1 = 1:2

for s2 = 1:3

w{j}{s1}{s2} = soft(w{j}{s1}{s2},lambda);

% w{j}{s1}{s2} = hard(w{j}{s1}{s2},lambda);

end

end

end

% 2D inverse DT CWT

y = idualtree2D(w,level,Fsf,sf);
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D.9 Image Segmentation

% ----------------------------------------------

% WATERSHED IMAGE SEGMENTATION

% ----------------------------------------------

delete(get(0,’children’));

% IMAGE DEFINITION

while 1==1

k=menu(’IMAGE’,’Test1 - Simulated image’,...

’Test2 - MR Knee image’,...

’Exit’);

if k==1

G=SimImage; bw=G>=0.4;

D = bwdist(~bw);

% Complement the distance transform, and force pixels

% that don’t belong to the objects to be at -Inf

D = -D;

D(~bw) = -Inf; %deep catchment basin

ss=’simimage’;

elseif k==2

[X] = dicomread(’mr_knee.dcm’);

G=double(X);

G=(G-min(G(:)))/(max(G(:))-min(G(:)));

% binary image matrix

bw=G>=0.2;

% ~bw complement the BW image

D = bwdist(~bw,’chessboard’);

D = -D;

D(~bw) = -Inf;

ss=’knee’;

else

break

end

% IMAGE VISUALIZATION

hf1=figure(’Name’,’Object’,’Units’,’Normal’,...

’Position’,[0.0 0.6 0.25 0.25]);

imshow(G,’n’), title(’TEXTURE’)

%% IMAGE WATERSHED TRANSFORM

LL = watershed(D);

% w=LL==0; % all zeros in LL are assigned to logical 1

% complement of LL

w=(~LL);

hf2=figure(’Name’,’Ridge’,’Units’,’Normal’,...

’Position’,[0.25 0.6 0.25 0.25]);

imshow(w,’n’), title(’RIDGE LINES’);
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%% SELECTED REGION DISPLAY

CONT(1)=’y’; col=0; P1=[]; P2=[];

while CONT(1)==’y’

col=col+1;

[j,i]=ginput(1); %one mouse click selection a time

reg=LL(round(i),round(j))

% all pixels in the selected region are set to regg

% resulting in a binary matrix R

R=LL==reg;

hf3=figure(’Name’,’Region’,’Units’,’Normal’,...

’Position’,[0.5 0.6 0.25 0.25]);

imshow(R,’n’), title([’REGION: ’,num2str(reg)]);

[B,L] = bwboundaries(R,’noholes’);

hold on

for k = 1:length(B)

boundary = B{k};

plot(boundary(:,2), boundary(:,1), ’b’, ’LineWidth’, 2)

end

hf4=figure(’Name’,’Region’,’Units’,’Normal’,...

’Position’,[0.75 0.6 0.25 0.25]);

R1=G.*R; imshow(R1,’n’), title(’SELECTED OBJECT’);

% CONT=input(’Continue (’’yes’’ or ’’no’’): ’)

CONT=’n’;

end %end while loop for region extraction

hf11=figure(’Name’,’Texture Segmentation’,’Units’,’Normal’,...

’Position’,[0.0 0.3 0.25 0.25]);

[r,c]=size(G); rd=round(0.1*r); cd=round(0.17*c);

imshow([G ones(r,3) w;ones(3,2*c+3); R ones(r,3) R1],’n’)

w=[0.999 1 1];

ta=text(c-cd,rd,’\bf (a)’,’Color’,w)

tb=text(2*c+3-cd,rd,’\bf (b)’,’Color’,w)

tc=text(c-cd,r+3+rd,’\bf (c)’,’Color’,w)

td=text(2*c+3-cd,r+3+rd,’\bf (d)’,’Color’,w)

end % end while loop - the whole menu
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D.10 Texture Classification

% ---------------------------------------------------------

% IMAGE FEATURE EXTRACTION - DWT DECOMPOSITION

% IMAGE TEXTURE CLASSIFICATION - COMPETITIVE NEURAL NETWORK

% ---------------------------------------------------------

clear,close all,clc

% IM04_VISUALIZATION for visualiation of the set of images

% IM04_FEATURE_SSQ /_MSTD for image feature extraction

% IM04_CLASSIFICATION for image neural network classification

% IM04_CLASS for classification boundaries plot

% IM04_DECOMPOSITION(wavelet,level,GN) for image wavelet analysis

% Also uses IM_dec.M and IM_decshow.M

% SIMULATED IMAGE TEXTURES

G=SimImage;

% Binary image

bw=G>=0.4;

D = bwdist(~bw);

% Complement the distance transform, and force pixels

% that don’t belong to the objects to be at -Inf

D = -D;

% infinite deep catchment basin

D(~bw) = -Inf;

%% IMAGE VISUALIZATION

f1=figure(1);

set(f1,’Units’,’Normalized’,’Position’,[0.395 0.22 0.39 0.39]);

imshow(G,’n’);

title(’{\bf (a)} IMAGE TEXTURE’);

% hold on

%% IMAGE WATERSHED TRANSFORM

LL = watershed(D);

% w=LL==0; % all zeros in LL are assigned to logical 1

% all ridge pixel values are replaced with a logical 1 and the rest logical 0

w=(~LL);

%% SELECTED REGION DISPLAY

for i=2:10

R{i}=LL==i; % all pixels in the selected region are set to reg

[B{i},L] = bwboundaries(R{i},’noholes’);

for k = 1:length(B{i})

boundary{i} = B{i}{k};

end
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R1{i}=G.*R{i};

% region extraction

e= min(boundary{i});

f= max(boundary{i});

x1= floor((e(:,1)+f(:,1))/2);

y1= floor((e(:,2)+f(:,2))/2);

R1{i}= R1{i}(e(:,1):f(:,1), e(:,2):f(:,2));

end

R1=R1(2:10); % R1{1} is the background cell matrix

% DWT Decomposition

level=1;

wavelet=’db2’;

[W,c,ind]=IM_dec(R1{2},level,wavelet);

% Feature Extraction - pattern matrix PAT

% sumsqr evaluation

[W,PAT,f2]=IM04_FEATURE_SSQ(wavelet,level,R1);

% mean std evaluation

% [W,PAT,f2]=IM04_FEATURE_MSTD(wavelet,level,R1);

% Classification, plot of image texture features

S=3; % Number of classes

f3=1;

color=’y’; % input(’Color output (’’yes’’ | ’’no’’): ’);

[W1,b1,ClassPattern,ClassAnal,net,Ac,f3]=...

IM04_CLASSIFICATION(PAT,S,color,f3);

IM04_CLASS(W1,b1,f3);

% Typical images

[f4]=IM04_TYPICAL(R1,ClassAnal);

% Visualization of selected image texture and its wavelet decomposition

% coefficients

[W1,f5]=IM04_DECOMPOSITION(wavelet,level,R1{2});

figure(6)

clf

plot(PAT(2,:),PAT(1,:),’+b’,’Linewidth’,2,’MarkerSize’,15);

title(’{\bf (a)} IMAGE TEXTURE FEATURES’)

grid on;

%axis([min(PAT(2,:)) max(PAT(2,:)) min(PAT(1,:)) max(PAT(1,:))]);

xlabel(’P(2,:)’); ylabel(’P(1,:)’);

f7=figure(7);

set(f7,’Units’,’Normalized’,’Position’,[0.395 0.22 0.39 0.39]);
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imshow(G,’n’), title(’{\bf (a)} IMAGE TEXTURE LABELS’);hold on

pal=[’b’ ’r’ ’m’ ’k’ ’y’ ’g’ ’c’ ];

for i=2:10

R{i}=LL==i; %all pixels in the selected region are set to reg

[B{i},L] = bwboundaries(R{i},’noholes’);

for k = 1:length(B{i})

boundary{i} = B{i}{k};

end

R1{i}=G.*R{i};

e= min(boundary{i});

f= max(boundary{i});

x1= floor((e(:,1)+f(:,1))/2);

y1= floor((e(:,2)+f(:,2))/2);

R1{i}= R1{i}(e(:,1):f(:,1), e(:,2):f(:,2));

h1=text(y1,x1,num2str(i-1));%labelling the image objects.

set(h1,’FontSize’,14,’color’,pal(Ac(i-1)));

end

% Typical images

CTyp=ClassAnal(4,1:S);

len=1/S;

figure(4)

clf

axes(’Position’,[(1-1)*len-0.1*len 0.5 1.2*len 1.2*len]); hold on

imshow(R1{CTyp(1)}); axis image; hold off

title(’{\bf (a)}’)

axes(’Position’,[(2-1)*len-0.1*len 0.5 1.2*len 1.2*len]); hold on

imshow(R1{CTyp(2)}); axis image; hold off

title(’{\bf (b)}’)

axes(’Position’,[(3-1)*len-0.1*len 0.5 1.2*len 1.2*len]); hold on

imshow(R1{CTyp(3)}); axis image; hold off

title(’{\bf (c)}’)
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function [W1,b1,ClassPattern,ClassAnal,net,Ac,f3]...

= IM04_CLASSIFICATION(PAT,S,color,f3)

% Neural network classification of pattern matrix P into S classes

% PAT - matrix (2,N) of image features

% S - number of classes

% color - color output (’yes’ | ’no’)

% f3 - figure handle

% W1,b1 - final neural network coefficients

% ClassPattern - classes of image patterns [index; Class; Pattern]

% ClassAnal - analysis of classes [ClassIndex; ClassLength; ClassSTD;

% ClassTypical]

% net - neural network definition

if color(1)==’y’

pal=[’b’ ’r’ ’m’ ’k’ ’y’ ’g’ ’c’ ];

else

pal=[’k’ ’k’ ’k’ ’k’ ’k’ ’k’ ’k’ ];

end

classname=[’A’ ’B’ ’C’ ’D’ ’E’ ’F’ ’G’];

klr=input(’Kohonen training rate (=0.01): ’);

% net = newc(minmax(PAT),S,klr,0.001);

net = newc(minmax(PAT),S,klr,0);

net.trainparam.epochs=input(’The number of training cycles (=200): ’);

net.b{1,1}=zeros(S,1)+eps; % Biases set to zero

% net.biases{1}.learnParam.lr = 0;

net = train(net,PAT);

W1=net.IW{1,1}; b1=net.b{1,1};

A = sim(net,PAT);

Ac = vec2ind(A);

ClassPattern=[1:length(PAT(1,:)); Ac; PAT];

% Analysis of image classification

for i=1:S

CC=ClassPattern(2,:)==i;

if sum(CC)~=0

ClassI = ClassPattern(:,CC);

D=dist(W1(i,:),ClassI([3 4],:));

ClassLength(i)=length(D); ClassSTD(i)=std(D);

[CT,j]=min(D); ClassTypical(i)=ClassI(1,j);

else

ClassLength(i)=0; ClassSTD(i)=0; ClassTypical(i)=0;

end

end

disp(’[ClassIndex; ClassLength; ClassSTD; ClassTypical]’)

ClassAnal=[[1:S]; ClassLength; ClassSTD; ClassTypical]
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Y=flipud(ClassAnal); YTemp=sortrows(Y’); ClassAnal=flipud(YTemp’); %%%

% Visualization of image features and network coefficients

f3=figure(3); set(f3,’Units’,’Normalized’,’Position’,[0.395 0.42 0.39 0.39]);

v=minmax(PAT); d=diff(v’)*0.05;

% axis([v(2,1)-d(2) v(2,2)+d(2) v(1,1)-d(1) v(1,2)+d(1)]);

axis([min(PAT(2,:)) max(PAT(2,:)) min(PAT(1,:)) max(PAT(1,:))]);

for i=1:length(PAT(1,:))

t1=text(PAT(2,i),PAT(1,i),num2str(i),’Color’,pal(Ac(i)));

end

hold on

for i=1:S

ii=ClassAnal(1,i);

t2=text(W1(ii,2),W1(ii,1),...

classname(i),’Color’,pal(ii),...

’FontSize’,16,’FontWeight’,’bold’);

end

hold off

grid on; set(gca,’Box’,’on’); title(’{\bf (b)} IMAGE TEXTURE CLASSIFICATION’)

xlabel(’W(:,2), P(2,:)’); ylabel(’W(:,1), P(1,:)’);

function [W,f5]=IM04_DECOMPOSITION(wavelet,level,GN)

% Visualization of selected image and its wavelet decomposition

% coefficients

% wavelet - wavelet decomposition function

% level - wavelet decomposition level

% GN - image matrix

% W(level).matrix - structured array of decomposition images at a given

% level

% matrix: A-approximation, H-horizontal, V-vertical, D-diagonal detail

% coefficients

% Uses IMDEC.M and IMDECSHOW.M

f5=figure(5);

h=axes(’Position’,[0.05 0.45 0.4 0.4]);

imshow(GN);

title(’{\bf (a)} GIVEN IMAGE’)

axis tight; v=axis;

h3=axes(’Position’,[0.1 0.06 0.77 0.3]);

[W,c,ind]=IM_dec(GN,level,wavelet);

plot(c,’g’); grid on;

set(gca,’XtickLabel’,[]);

axis tight; v=axis;
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dv=v(3)-0.08*(v(4)-v(3));

title([’{\bf (c)} IMAGE SCALING AND WAVELET COEFFICIENTS: LEVELS 1-’,...

num2str(level)])

ylabel([’WAVELET: ’,wavelet])

for i=1:3*level+1

line([ind(i+1); ind(i+1)],[v(3);v(4)])

end

text(v(1), dv, [num2str(level),’,’,’0’]);

for i=1:level

for j=1:3

text(ind(3*(i-1)+j+1), dv, [num2str(level-i+1),’,’,num2str(j)]);

end

end

h=axes(’Position’,[0.52 0.45 0.4 0.4]);

A1=IM_decshow(W);

title(’{\bf (b)} IMAGE DECOMPOSITION’)

axis tight; v=axis;

function [W,PAT,f2]=IM04_FEATURE_SSQ(wavelet,level,GN)

% Image Feature Extraction using wavelet decomposition

% wavelet - wavelet decomposition function

% level - wavelet decomposition level

% GN - multidimensional array of images

% W(level).matrix - structured array of decomposition images at a given

% level

% matrix: A-approximation, H-horizontal, V-vertical, D-diagonal

% detail coefficients

% PAT - pattern matrix for image classification

% f2 - image handle

% Uses IMDEC.M and IMDECSHOW.M

N=length(GN);

disp([’Number of images: ’, num2str(N)]);

fprintf(’\n’)

F1(1)=input(’Level of the first feature (=1,2,..): ’);

F1(2)=input(’Property of the first feature (=’’H|V|D’’)): ’);

F2(1)=input(’Level of the second feature (=1,2,..): ’);

F2(2)=input(’Property of the second feature (=’’H|V|D’’)): ’);

fprintf(’\n’)

fprintf(’\n’)

for ii=1:N

% Definition of input values

%GN{ii}=nnzmatrix(GN{ii});
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[XL,YL]=size(GN{ii});

disp([’Image size: ’, num2str(XL),’x’,num2str(YL)]);

% Evaluation of image features

for v=1:level

G1=GN{ii};

S=G1-mean2(G1); S=(S-min(S(:)))/(max(S(:))-min(S(:)));

[W,c,ind]=IM_dec(S(:,:),v,wavelet);

FH=sumsqr(W(v).H(:));

FV=sumsqr(W(v).V(:));

FD=sumsqr(W(v).D(:));

PH(v)=(FH);

PV(v)=(FV);

PD(v)=(FD);

end

eval([’P1=P’,F1(2),’(’,num2str(F1(1)),’);’]);

eval([’P2=P’,F2(2),’(’,num2str(F2(1)),’);’]);

PAT([1 2],ii)=[P1; P2];

end

% Visualization of image features

f2=figure(2); axis([min(PAT(2,:)) max(PAT(2,:)) min(PAT(1,:)) max(PAT(1,:))]);

for i=1:N

text(PAT(2,i),PAT(1,i),num2str(i));

end

grid on; title(’CLUSTERS OF IMAGE FEATURES’)

xlabel(’Feature(2,:)’); ylabel(’Feature(1,:)’);

function [W,PAT,f2]=IM04_FEATURE_MSTD(wavelet,level,GN)

% Image Feature Extraction using wavelet decomposition

% wavelet - wavelet decomposition function

% level - wavelet decomposition level

% GN - multidimensional array of images

% W(level).matrix - structured array of decomposition images at a given

% level

% matrix: A-approximation, H-horizontal, V-vertical, D-diagonal

% detail coefficients

% PAT - pattern matrix for image classification

% f2 - image handle

% Uses IMDEC.M

N=length(GN);

disp([’Number of images: ’, num2str(N)]);

fprintf(’\n’)

F1(1)=input(’Level of the first feature (=1,2,..): ’);
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F1(2)=input(’Property of the first feature Mean (=’’M’’)): ’);

F2(1)=input(’Level of the second feature (=1,2,..): ’);

F2(2)=input(’Property of the second feature STD (=’’S’’)): ’);

fprintf(’\n’)

fprintf(’\n’)

for ii=1:N

% Definition of input values

% GN{ii}=nnzmatrix(GN{ii});

[XL,YL]=size(GN{ii});

disp([’Image size: ’, num2str(XL),’x’,num2str(YL)]);

% Evaluation of image features

for v=1:level

G1=GN{ii};

S=G1-mean2(G1);

S=(S-min(S(:)))/(max(S(:))-min(S(:)));

% DWT decomposition

[W,c,ind]=IM_dec(S(:,:),v,wavelet);

% detail coefficients at level v

GG=[W(v).H(:); W(v).V(:); W(v).D(:)];

% Mean

PM(v)=mean(GG);

% Standard deviation

PS(v)=std(GG);

end

eval([’P1=P’,F1(2),’(’,num2str(F1(1)),’);’]);

eval([’ST1=P’,F2(2),’(’,num2str(F2(1)),’);’]);

% pattern matrix

PAT([1 2],ii)=[P1; ST1];

end

% Visualization of image features

f2=figure(2); axis([min(PAT(2,:)) max(PAT(2,:)) min(PAT(1,:)) max(PAT(1,:))]);

for i=1:N

text(PAT(2,i),PAT(1,i),num2str(i));

end

grid on; title(’CLUSTERS OF IMAGE FEATURES’)

xlabel(’Feature(2,:)’); ylabel(’Feature(1,:)’);

function IM04_CLASS(W1,b1,f3)

% function IM04_CLASS(W1,f3)

% Neural network boundaries

% f3 - figure handle

% W1,b1 - final neural network coefficients

figure(f3);

S=length(W1(:,1));
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v=axis; PVX=[v(1),v(2)];

for q=1:S-1 % Line q definition

for n=q+1:S

PXO=[];

PY=(sum(W1(q,:).^2)-sum(W1(n,:).^2)-2*PVX*diff(W1([n q],2)))/...

(2*diff(W1([n q],1)));

hty=line(PVX,PY,’color’,’b’,’LineStyle’,’:’,’LineWidth’,0.2);

% Evaluation of intersection of boundaries

for m=1:S

if m~=n & m~=q

PXO=[PXO (diff(W1([m,q],1))*(sum(W1(q,:).^2)-sum(W1(n,:).^2))...

-diff(W1([n,q],1))*(sum(W1(q,:).^2)-sum(W1(m,:).^2)))/...

(2*(diff(W1([n,q],2))*diff(W1([m,q],1))...

-diff(W1([m,q],2))*diff(W1([n,q],1))))];

end

end

PXO=PXO( PXO > v(1) & PXO < v(2) );

PXO=[v(1) PXO v(2)]; PXO=sort(PXO);

PYO=(sum(W1(q,:).^2)-sum(W1(n,:).^2)-2*PXO*diff(W1([n q],2)))/...

(2*diff(W1([n q],1)));

if S>2

for i=2:length(PXO); % Boundary lines segmentation

L=[];

for m=1:S % Intersection classification

if m~=n & m~=q

PX=(PXO(i-1)+PXO(i))/2;

PY=(sum(W1(q,:).^2)-sum(W1(n,:).^2)-...

2*PX*diff(W1([n q],2)))/(2*diff(W1([n q],1)));

L=[L dist(W1(q,:),[PY;PX]) < dist(W1(m,:),[PY;PX]) ];

end

end

if ~isempty(L) & prod(L)>0

line(PXO(i-1:i),PYO(i-1:i),’color’,’k’,...

’LineStyle’,’-’,’LineWidth’,2);

end

end

end

end

end
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Index

3-D discrete wavelet transform, 38

3-D image visualization, 9

binary images, 129

competitive neural network, 88

continuous wavelet transform, 24

convolution theorem, 22

cubic spline interpolation, 123

DICOM, 6

dilation equation, 34

discrete Fourier transform, 13

discrete wavelet transform, 27

downsampling, 31, 116

dual tree CWT, 63

feature extraction, 83

filter bank decomposition, 29

frequency domain filtering, 23

global threshold, 46

image coding, 127

image de-noising, 44

image decomposition, 36

image quality, 47

image segmentation, 77

indexed images, 127

inverse DFT, 16

Kohonen’s learning algorithm, 88

level dependent threshold, 46

MATLAB web server, 133

mean of absolute error, 48

mean square error, 47

MRI, 5

multi-level decomposition, 32

noise, 1, 41

optimal threshold estimation, 46

orthogonal filters, 32

orthogonality, 114

periodicity , 21

PSNR, 47

RGB images, 129

sampling theorem, 15

scaling, 21

scaling function, 28

scalogram, 27

segmentation, 77

separability, 22

short-time Fourier transform, 18

spectrogram, 18

subband energy, 70, 83

texture classification, 87

thresholding, 45

time-frequency analysis, 13

time-scale analysis, 24

translation invariance, 66

upsampling, 31, 119

watershed transform, 78

wavelet, 28
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