
Institute of Chemical Technology, Prague

Department of Computing and Control Engineering
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1

Introduction

Digital signal processing (DSP) represents a general interdisciplinary area [36, 30, 3, 41, 35]

based upon numerical or symbolical analysis of one-dimensional or multi-dimensional data

sets that may stand for any physical, engineering, biomedical, technological, biological,

acoustic, seismic or economical variable measured or observed with a given sampling

period. Selected applications and goals of their processing are presented in Fig. 1.1. Even

though applications cover completely different areas the mathematical background of

their analysis is very close allowing processing of vectors, matrices or multi-dimensional

arrays of observed data in a general way. Digital signal processing methods thus form an

integrating platform for many diverse research branches.

DIGITAL SIGNAL AND IMAGE ACQUISITION

Two-Dimensional Images Multi-Dimensional ObjectsOne Dimensional Signals

Biomedical Signals

Energy Consumption Signals

Communication Signals

Engineering Signals
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Multimedia

Engineering Bodies 
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FIGURE 1.1. Fundamental applications of one-dimensional and multi-dimensional signal pro-
cessing and selected goals of their analysis

Fundamental mathematical methods of signal, image and multi-dimensional objects

processing in the space and frequency domains are summarized in Fig. 1.2 and they

include the following main topics

• Space domain deterministic processing

• Probabilistic signal processing

• Space domain adaptive processing

• Space-Frequency analysis

• Space-Scale analysis
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Selected mathematical methods presented in this figure cover basic numerical methods

[4], statistical methods, adaptive methods including neural networks, discrete Fourier

transform and discrete wavelet transform. Goals of signal analysis cover the estimation of

its characteristic parameters either in the original or in the transform domain. In some

cases of signal processing deterministic methods may be applied but in many applications

statistical and adaptive methods [12, 33] must be used to compensate for the incomplete

knowledge of the real system time variations.

          Space Domain
Deterministic Processing

Numerical Methods Statistical Methods Artificial Neural Network
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          Space Domain
Deterministic Processingg

     Probabilistic
Signal Processing

     Space Domain
Adaptive Processing

Space-Frequency AnalysisSpace-Frequency Analysis Space-Scale Analysis

Filters: FIR, IIR

FIGURE 1.2. Fundamental mathematical methods of digital signal and image processing both
in the space and frequency domains and associated goals of their applications
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1.1 Historical Notes

The mathematical fundamentals of digital signal
and image processing methods are based upon
numerical analysis [1] that predates the inven-
tion of modern computers by many centuries us-
ing works of famous mathematicians including
that of Isaac Newton (1643-1727), Joseph Louis
Lagrange (1736-1813) and Leonhard Euler (1707-
1783). The matrix theory introduced in the mid-
dle of the 19th century incorporating ideas of
Gottfried Wilhelm Leibnitz (1646-1716) and Carl
Friedrich Gauss (1777-1855) forms now one of its
basic mathematical tools as well.

Isaac Newton
(January 1,1643-March 31,1727)

Jean Baptiste Joseph Fourier
(March 21,1768-May 16,1830)

Carl Friedrich Gauss
(April 30,1777-February 23,1855)

The theory of digital signal processing is in many cases closely connected with the

Fourier representation of functions suggested in 1822 [9] by Jean Baptiste Joseph Fourier

(1786-1830) and on the method of the least squares presented independently by Carl

Friedrich Gauss [10] and Adrien-Marie Legendre (1752-1833) [21] in the beginning of

the 19th century.

Basic mathematical methods were later ex-
tended to many fields including the estimation
theory and stochastic processes introduced by
Norbert Wiener (1894-1964) in 1949 [44] and
Rudolf E. Kalman (1930-) [19] with applications
in various areas covering adaptive filtering prob-
lems and spectrum analysis. Many algorithms
use properties of the discrete Fourier transform
and their implementation is enabled by its fast
version published by James Cooley (1926-) and
John Tukey (1915-2000) [7] in 1965. The lat-
est research of wavelet transform using the first
known wavelet proposed by Alfred Haar (1885-
1933) in 1909 is based upon research of Ingrid
Daubechies (1954-) published in 1992 [8].

Adrien-Marie Legendre
(September 18,1752-January 10,1833)
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1.2 Applications

Basic methods and applications of digital signal and image processing methods summa-

rized in Fig. 1.1 cover [40, 12, 3, 41, 14]

• Spectrum estimation giving the distribution of power over frequency and enabling

in this way to distinguish characteristic signal components important for analysis

and further processing [13] in biomedicine, chemistry, seismology, communications

and control systems,

• Digital filtering originally used to eliminate undesirable frequency components or to

reduce noise in communications, multimedia systems, control structures or biomed-

ical data [29, 16, 17] and to improve possibilities of acoustic and image processing,

• Correlation techniques enabling comparison of signals representing in many cases

sampled physical quantity.

Classical applications mentioned above has been substantially enlarged by the use of

adaptive filters giving ability to operate in an unknown environment on discrete signals

representing any physical or technological variable. General objectives of such a processing

may result in

• System identification substantial for mathematical modelling in science or engineer-

ing and including parameter estimation and inverse modelling as well,

• Signal detection and prediction enabling to find out the useful information in a given

sequence and to forecast its behaviour,

• Interference cancelling used to reject undesirable signal components for further sig-

nal analysis and processing.

In case of general systems time-varying models are obtained and methods used for

adaptive processing are closely related to that of computational intelligence and neural

networks.

1.3 Algorithmic Tools

Computer experiments suggested in this text may be transformed into any computer

language but all presentations described bellow were realized in the MATLAB software

package [11, 26, 27, 6] allowing a very simple realization of all methods in form very

close to the original matrix notation. There are many books devoted to signal and image

processing using this computational environment [38, 14, 37, 28].
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2

Discrete Signals and Systems

Let us start the study of digital signal processing methods by the summary of basic signals

and systems properties and mathematical tools enabling their description and analysis.

Such a background is substantial for the development of classical and adaptive methods

described further.

2.1 Fundamental Concepts

Most of observed signals are continuous functions xa(t) of one or more variables. Before

their digital processing it is necessary to realize their sampling with a given sampling

period Ts (or sampling frequency fs = 1/Ts). In case of one independent variable (usually

standing for time) resulting discrete-time signal is represented (Fig. 2.1) by a sequence of

numbers

x = {x(n)} = {xa(nTs)} (2.1)

for n ∈ (−∞, +∞). As real analog/digital converters are able to approximate discrete-

time values by a limited number of digits only such a sequence is digital in fact [30, 23].

Time domain signal description enables definition of deterministic signals includ-

ing periodic and nonperiodic signals by their mathematical definition. The most important

deterministic signals represent

- unit sample sequence: d(n) =

{
1 for n = 0
0 for n �= 0

- unit step sequence: u(n) =

{
1 for n ≥ n0

0 for n < n0

- real exponential sequence: x(n) = an

- sinusoidal sequence: x(n) = A sin(2πfn)

The sketch of these signals is given in Fig. 2.2.

Further signals may be described by their own mathematical definition and they may be

also combined using the basic operations summarized in Tab. 2.1 (including also MATLAB

notation which in real programs does have no formal difference between scalars, vectors

or matrixes considering a scalar as a special matrix with one element only).

Analog / Digital
      Convertor

x(n
)

Analog / Digital
     Convertor

x(n
)

x(n
)

x a(
t)

FIGURE 2.1. Sampling process of an analog signal
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−10 0 10 20 30
0

0.5

1

1.5

Index
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0

1

Index
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FIGURE 2.2. Basic deterministic signals

In many practical cases observed signals are random including unpredictable noise as

well. Description of such signals is based upon a random signal theory presented in many

books including [31, 2, 12]. The analysis of these signals may be in many cases restricted

to stationary random signals with their basic probabilistic characteristics (average and

autocovariance function) independent of the starting index of observation. An example of

a random signal with its histogram approximating its probabilistic distribution is given

in Fig. 2.3.

For various signal analysis techniques it is useful to refer to the energy of a sequence

defined ([23, p.24] or [30, p.10]) as

E =
∞∑

n=−∞
|x(n)|2 (2.2)

Frequency domain signal description is another method of the given sequence

approximation which is substantial in many digital signal processing methods. Fourier

series applied for continuous signals studied for example in [24, p.10] or [23, p.258] are

originally restricted to the approximation of a periodic function f(t) with period T by

the weighted sum of complex exponentials or trigonometric functions in the form

faprox(t) =
∞∑

k=−∞
Fke

jk 2π
T

t = a0 +
∞∑

k=1

(
akcos(k

2π

T
t) + bksin(k

2π

T
t)

)
(2.3)

Operation Definition MATLAB notation

multiplication {x(n)} · {y(n)} ≡ {x(n) · y(n)} x .� y
linear combination a · {x(n)} + b · {y(n)} ≡ {a · x(n) + b · y(n)} a�x+b�y

convolution {x(n)} � {y(n)} ≡ {
∞∑

k=−∞
x(k)y(n − k)} conv(x,y)

translation {x(n − n0)}
TABLE 2.1. Basic sequence operations
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FIGURE 2.3. Stationary random signal with normal probabilistic distribution and its histogram

Using the mean square error method it is possible to derive that

Fk =
1

T

∫ T

0

e−jk 2π
T

t dt (2.4)

for k = 0,±1,±2, · · · and after the application of Euler relations for complex exponentials

it is possible to express

a0 =
1

T

∫ T

0

f(t) dt

ak =
1

T

∫ T

0

f(t) cos(k
2π

T
t) dt (2.5)

bk =
1

T

∫ T

0

f(t) sin(k
2π

T
t) dt

for k = 1, 2, · · · .Example of such an approximation of a rectangular function with its

period T = 2π by a limited number of terms in the form

faprox(t) =
4

π
(sin(t) +

1

3
sin(3t) +

1

5
sin(5t) +

1

7
sin(7t)) (2.6)

is presented in Fig. 2.4 together with weights denoting the significance of separate fre-

quency components. Generalization of this method to non-periodic signals is studied fur-

ther in connection with the discrete Fourier transform analysed for instance in [40, p.59]

as well. It enables signal description in the form of a finite number of its frequency com-

ponents giving possibility of the sampling rate estimation as well.

Theorem 2.1 Let fm is the highest frequency component of a signal. Then the sampling

frequency fs must be greater or equal then 2fm to enable its perfect reconstruction.

Proof of this theorem is closely connected with the theory of the discrete Fourier transform

presented further and studied in many books including [30, p.28], [40, p.45] or [23, p.57].
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FIGURE 2.4. Rectangular function approximation with the separate frequency components

2.2 Discrete System Description

A discrete system is mathematically defined as a transform of the input sequence {x(n)}
into the output sequence {y(n)} by means of an operator T (Fig. 2.5). In case of the unit

sample input sequence {d(n)} the system output is called the impulse response {h(n)}
having substantial role in signal analysis presented further. Process of such a transforma-

tion is often called digital filtering which in the broader sense includes both extraction of

information from a given signal and system identification or control as well.

Definition 2.1 Linear shift invariant system is a discrete system having the following

properties

T[a x1(n) + b x2(n)] = a T[x1(n)] + b T[x2(n)] (2.7)

T[x(n)] = y(n) ⇒ T[x(n − k)] = y(n − k) (2.8)

Theorem 2.2 Let {h(k) : h(k) = T[d(k)]} stands for the impulse response of a discrete

linear shift invariant system. Then the response of this system to the signal {x(n)} is

determined by the convolution sum

y(n) = h(n) ∗ x(n) =
∞∑

k=−∞
h(k) x(n − k) (2.9)

DISCRETE
  SYSTEM

(a)

x(
n
)

y
(n
)

DISCRETE
  SYSTEM

(a)

x(
n
)

y
(n
)

DISCRETE
  SYSTEM

(a)

x(
n
)

y
(n
)

DISCRETE
  SYSTEM

(a)

x(
n
)

y
(n
)

DISCRETE
  SYSTEM

(b)

h
(n
)

d(
n)

DISCRETE
  SYSTEM

(b)

h
(n
)

h
(n
)

d(
n)(
)

DISCRETE
  SYSTEM

(b)

h
(n
)

d(
n)

DISCRETE
  SYSTEM

(b)

h
(n
)

d(
n)

FIGURE 2.5. General discrete system and its application for impulse processing
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Proof: It is obvious that it is possible to define signal {x(n)} by means of the impulse

function {d(n)} in the form

x(n) =
∞∑

k=−∞
x(k) d(n − k)

Using system operator T it is possible to calculate the system output

y(n) = T[
∞∑

k=−∞
x(k) d(n − k)]

After application of properties (2.7) and (2.8) of a shift invariant system it is possible to

write

y(n) =
∞∑

k=−∞
x(k) T[d(n − k)] =

=
∞∑

k=−∞
x(k) h(n − k)

By further substitution to change indices we shall receive expression (2.9). �
Results presented above implies that any linear shift invariant system is completely

defined by its unit sample response {h(n)}. This result can be further used to determine

system stability [23, p.34].

Definition 2.2 A discrete system is said to be stable if every bounded input sequence

{x(n)} implies bounded output sequence {y(n)}.

Theorem 2.3 A linear shift invariant system is stable if and only if the sum

S =
∞∑

k=−∞
|h(k)| (2.10)

has a finite value.

Proof: Assume that the input sequence is bounded by a finite M such that |x(n)| < M

for all n. Then it is possible to use Eq. (2.9) and the triangular inequality to write

|y(n)| = |
∞∑

k=−∞
h(k) x(n − k)| ≤

∞∑
k=−∞

|h(k)| |x(n − k)| < M

∞∑
k=−∞

|h(k)| = M S

Therefore if S is finite the output sequence is bounded as well. �
Further considerations are in most cases restricted to causal systems [23, p.38] having

their output for each n dependent on input values for k ≤ n only. Impuls response {h(n)}
of such systems is nonzero for n ≥ 0 only and Eq. (2.9) has therefore the following form

y(n) =
∞∑

k=0

h(k) x(n − k) (2.11)
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FIGURE 2.6. Block diagram and signal flow graf representation of the IIR filter (with symbol
z−1 standing for the unit sample delay)

Time domain discrete system description may be in many cases restricted to the

linear constant coefficient difference equation ([40, p.180], [30, p.16]) defining relationship

between the input and output sequence in the form

y(n) +
N∑

k=1

a(k) y(n − k) =
N∑

k=0

b(k) x(n − k) (2.12)

This general equation denoted as autoregressive-moving average (ARMA) model can take

the following specific simplifications

(i) moving average (MA) model in the form

y(n) =
N∑

k=0

b(k) x(n − k) (2.13)

(ii) autoregressive (AR) model in the form

y(n) +
N∑

k=1

a(k) y(n − k) = x(n) (2.14)

Comparing Eqs. (2.13) and (2.11) it is possible to see that coefficients {b0, · · · , bN}
stand for the finite duration impulse response {h0, · · · , hN} and corresponding digital

system is therefore also called finite impulse response (FIR) filter. Owing to Theorem 2.2

it is always stable which explains one of reasons of its popularity.

General autoregressive and autoregressive-moving average model represent infinite im-

pulse response (IIR) filter as explained in the following example. Graphical description of

such a general system in the block diagram form and signal flow graf representation [30,

p.136] is presented in Fig. 2.6.

Example 2.1 Calculate the unit sample response of a digital system described by the

difference equation (2.12).
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Solution: Assume the input sequence {x(n)} = {d(n)}. Denoting the impulse response

{y(n)} = {h(n)} it is possible to use Eq. (2.12) to evaluate sequence {h(n)} in the form

h(n) = 0, n < 0

h(0) = b0

h(1) = b1 − a1 h(0)

h(2) = b2 − a1 h(1) − a2 h(0)

· · ·
h(N) = bN −

N∑
k=1

ak h(N − k)

h(n) = −
N∑

k=1

ak h(n − k), n > N

This generally infinite sequence stands for the infinite impulse response of studied digital

system.

General shift invariant model of the linear shift invariant system described by the

difference Eq. (2.12) can be expressed in the following vector form

y(n) + a

⎡
⎢⎣

y(n − 1)
...

y(n − N)

⎤
⎥⎦ = b

⎡
⎢⎣

x(n − 1)
...

x(n − N)

⎤
⎥⎦ (2.15)

where a=[a1, · · · , aN ]

b=[b1, · · · , bN ]

This system representation involves calculations with past values of the signal output

variables.

State space representation of a digital filter described for instance in [18, p.84] or [23,

231] enables evaluation of the output value y(n) as a linear combination of the input value

x(n) and state variables v (n) = [v1(n), · · · , vN(n)]′ in the form

y(n) = c v(n) + d x(n) (2.16)

where c = [c1, · · · , cN ], d are the state space model coefficients. The state space vector of

the system represents the minimal information required to determine the output and it

must be updated for each n for a linear discrete system by state equation

v(n + 1) = A v(n) + bx(n) (2.17)

where

A =

⎡
⎣ a11 · · · a1N

· · ·
aN1 · · · aNN

⎤
⎦ , b =

⎡
⎢⎣

b1
...

bN

⎤
⎥⎦ (2.18)

stand for so called state transition matrix and excitation vector respectively.

State space method can be simply applied for multiple inputs and outputs as well (using

vectors and matrices instead of scalars and vectors) and can be also used for time varying

systems. Graphical description of a general state space representation of a discrete system

in signal flow graf notation is presented in Fig. 2.7.
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FIGURE 2.7. Signal flow graf representation of the state space system description

Example 2.2 Derive space equations for the FIR system described by the difference equa-

tion in the form

y(n) = h0 x(n) + h1 x(n − 1) + · · · + hN x(n − N)

Solution: Let us define the first state variable

vN(n) = h1 x(n − 1) + h2 x(n − 2) + · · · + hN x(n − N)

allowing to express the output equation in the form

y(n) = [0 0 · · · 1] v(n) + h0 x(n) (2.19)

To derive further state equations let us express

vN(n + 1) = h1 x(n) + h2 x(n − 1) + · · · + hN x(n + 1 − N) =

= h1 x(n) + vN−1(n)

with the next state variable in the form

vN−1(n) = h2 x(n − 1) + h3 x(n − 2) + · · · + hN x(n + 1 − N)

In the same way it is possible to derive

vN−1(n + 1) = h2 x(n) + vN−2(n)

vN−2(n + 1) = h3 x(n) + vN−3(n)

· · ·
v2(n + 1) = hN−1 x(n) + v1(n)

v1(n + 1) = hN x(n)

and to write the state equation in the form
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v(n + 1) =

⎡
⎢⎢⎢⎢⎣

0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0

· · ·
0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎦v(n) +

⎡
⎢⎢⎢⎢⎢⎣

hN

hN−1
...

h2

h1

⎤
⎥⎥⎥⎥⎥⎦ x(n) (2.20)

Frequency domain representation of a linear shift invariant system ([30, p.19]

or [23, p.84]) is very useful in the linear system theory as it provides information about

signal processing with respect to its frequency components. In particular the steady state

response of such a system to the sinusoidal function is a sinusoid of the same frequency

but different amplitude and phase determined by the system.

Since a sinusoid can be defined by the sum of two complex exponentials we can apply

a discrete input sequence in the form

x(n) = ejωn

Using Theorem 2.2 it is possible to determine system output in the form

y(n) =
∞∑

k=−∞
h(k) ejω(n−k) = ejωn

∞∑
k=−∞

h(k) e−jωk

Defining the frequency response

H(ejω) =
∞∑

k=−∞
h(k) e−jωk

we can evaluate the system output

y(n) = H(ejω) ejωn (2.21)

Using magnitude and phase of the frequency response it is further given by expression

y(n) = |H(ejω)| earg(H(ejω)) ejωn

Result presented by Eq. (2.21) is valid under assumption that the input sequence has

been applied for k → −∞. In real applications the discrete time system provides transient

period before the steady state response.

Example 2.3 Evaluate amplitude frequency response of a moving average system de-

scribed by equation

y(n) =
1

N

N−1∑
k=0

x(n − k)

Solution: Applying x(n) = ejωn we shall receive

y(n) =
1

N

N−1∑
k=0

ejω(n−k) = ejωn 1

N

N−1∑
k=0

e−jωk
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FIGURE 2.8. Amplitude frequency response of the moving average discrete system

Evaluating the sum of the geometrical sequence we shall obtain

y(n) = ejωn 1

N

1 − e−jωN

1 − e−jω

As

H(ejω) =
1

N

1 − e−jωN

1 − e−jω
=

1

N

e−jωN/2

e−jω/2

ejωN/2 − e−jωN/2

ejω/2 − e−jω/2

we can evaluate its amplitude using Euler relations in the form

∣∣H(ejω)
∣∣ =

1

N

∣∣∣∣cos(ωN/2) + jsin(ωN/2) − (cos(ωN/2) − jsin(ωN/2))

cos(ω/2) + jsin(ω/2) − (cos(ω/2) − jsin(ω/2))

∣∣∣∣ =

=
1

N

∣∣∣∣sin(ωN/2)

sin(ω/2)

∣∣∣∣
Amplitude frequency response given in Fig. 2.8 for ω ∈ 〈0, π〉 provides information about

the system behaviour with respect to the signal frequency components.

Difference equations or state space representation provide possibilities for the time do-

main digital system application while the frequency response provides information about

its behaviour with respect to its frequency components. Methods of parameter estima-

tion enabling signal analysis or its processing to achieve prescribed system behaviour are

studied in next sections.
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3

Mathematical Background

Discrete signals are represented by sequences of values which implies the discrete system

description by difference equations instead of differential equations for continuous signals.

Resulting discrete system analysis and processing involves the following basic mathemat-

ical disciplines:

• Z-transform based upon the complex variable theory used for signal and system

description

• theory of difference equations used for system representation

• discrete Fourier transform covering signal component analysis

• statistical methods including stochastic processes and the least square method fun-

damental for adaptive signal processing

Topics mentioned above are described in many special books and we shall summarize

basic results only with notes to further detail references.

3.1 Z-transform and Signal Description

Z-transform is a mathematical tool closely connected with the theory of complex vari-

able enabling compact signal and system description and giving possibility of its simple

processing [23, p.76], [40, p.124], [42].

3.1.1 Definitions and Basic Properties

Definition 3.1 The two-sided Z-transform of a sequence {x(n)} is defined as

Z[x(n)] = X(z) =
∞∑

n=−∞
x(n)z−n (3.1)

in the complex plane of variable z.

In case of a causal sequence having x(n) = 0 for n < 0 the transform is reduced to

one-sided only with summation in Def. 3.1 for n = 0, 1, · · · ,∞. In both cases the region

of convergence covers the set of those z values for which the summation has a finite value.

Example 3.1 Evaluate the Z-transform of the causal exponential sequence with its region

of convergence.

Solution: Using the unit step function it is possible to express the exponential sequence

x(n) = anu(n) =

{
an for n ≥ 0
0 for n < 0
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FIGURE 3.1. Exponential sequence x(n) = an for a = 0.8 and absolute value of its Z-trans-
form representation above the region of convergence for |z| > |a| in the complex domain for
Re(z) ∈ 〈−1.1, 1.1〉 and Im(z) ∈ 〈−1.1, 1.1〉

and to find
X(z) =

∞∑
n=0

anz−n

which represents the geometrical sequence having its value

X(z) =
1

1 − az−1

for quotient |az−1| < 1 which implies |z| > |a|. Representation of original sequence and

its Z-transform in the complex plane above the region of convergence is given in Fig. 3.1.

Using the Def. 3.1 it is possible to evaluate Z-transform of further sequences and the re-

gion of convergence as well. Some results are summarized in Tab. 3.1 presenting correspon-

dence between original sequences {x(n)} and their representation X(z) in the complex

plane. Advantages of such a transformation are obvious from the next section presenting

possibilities of discrete system description and difference equation solution.

Example 3.2 Evaluate the two-sided Z-transform of the exponential sequence

x(n) =

{
an for n ≥ 0
bn for n < 0

Solution: Using the Def. 3.1 it is possible to find

X(z) =
−∞∑

n=−1

bnz−n +
∞∑

n=0

anz−n =
∞∑

n=1

b−nzn +
∞∑

n=0

anz−n

In case that quotients of these geometrical sequences are in absolute values less than one

which means that

|b−1z| < 1 and |az−1| < 1

or

|a| < |z| < |b|
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FIGURE 3.2. Region of convergence for the two-sided exponential sequence

it is possible to express the result in the form

X(z) =
b−1z

1 − b−1z
+

1

1 − az−1
= − z

z − b
+

z

z − a
=

z(a − b)

(z − a)(z − b)

Region of convergence is given in Fig. 3.2. It is obvious that according to values |a| and

|b| it can be empty as well.

Fundamental properties of the Z-transform can be stated in the following form
1. Linearity

Z[ax1(n) + bx2(n)] = aZ[x1(n)] + bZ[x2(n)] (3.2)

2. Translation
Z[x(n)] = X(z) ⇒ Z[x(n − m)] = z−mX(z) (3.3)

3. Convolution in time domain

Z[
∞∑

k=−∞
x(k)y(n − k)] = Z[x(n)] · Z[y(n)] (3.4)

4. Initial value theorem (for causal sequences)

x(0) = lim
z→∞

X(z) (3.5)

Proofs of these properties result from the Def. 3.1.

Sequence Definition Z-transform Region of convergence

Unit sample d(n) =

{
1 for n = 0
0 for n �= 0

1 all z

Unit step u(n) =

{
1 for n ≥ 0
0 for n < 0

z

z − 1
|z| > 1

Exponential x(n) = anu(n)
z

z − a
|z| > |a|

Harmonic x(n) = sin(2πfn)
z sin(2πf)

z2 − 2z cos(2πf) + 1
|z| > 1

x(n) = cos(2πfn)
z2 − z cos(2πf)

z2 − 2z cos(2πf) + 1
|z| > 1

TABLE 3.1. Basic sequences and their Z-transform
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3.1.2 Inverse Z-transform

Polynomial X(z) defined by Eq. (3.1) is determined by the complete sequence x(n) and

it enables its reconstruction as well confirming in this way the equivalence between the

sequence definition in time and complex domains. This process of the inverse Z-transform

can be performed in several ways.

The application of complex inversion integral is based upon the complex variable

theory [23, p.76], [42], [12, p.770] enabling the derivation of the Z-transform inversion

formula in the form

x(n) =
1

2πj

∮
C

X(z)
zn

z
dz (3.6)

with C representing the closed contour laying inside the region of convergence.

As the Z-transform definition usually results in the rational representation of X(z) the

partial fraction expansion method may be used to express the original function

as a sum of simple fractions in the following way.

1. Evaluation of poles p0, p1, ..., pN of

X(z) =
b0z

N + · · · + bN

a0zN + · · · + aN

(3.7)

with some possible zero coefficients and unequal order of numerator and denominator

polynomials.

2. Partial fraction expansion of function X(z)/z based upon the knowledge that z

appears in the numerators of functions X(z)

X(z)

z
=

c0

z − p0

+
c1

z − p1

+ · · · + cN

z − pN

+ (k1 + k2z + · · · ) (3.8)

and evaluation of coefficients c0, c1, · · · , cN . Direct terms with coefficients k1, k2, · · ·
appear for non-proper fractions only. As complex poles are in complex conjugate

pairs they can be combined into second order terms before further processing.

3. Using expression

X(z) =
c0z

z − p0

+ · · · + cNz

z − pN

+ (k1z + k2z
2 + · · · ) (3.9)

with possible second order terms we can use the Z-transform table in connection

with the knowledge of basic properties and the region of convergence to find the

original sequence.

Example 3.3 Evaluate the causal sequence x(n) having its Z-transform in the form

X(z) =
0.3z

z2 − 0.7z + 0.1

Solution: As
X(z)

z
=

0.3

(z − 0.2)(z − 0.5)
=

c0

z − 0.2
+

c1

z − 0.5

it is possible to find coefficients c0, c1 from the following equation
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0.3 = c0(z − 0.5) + c1(z − 0.2)

The previous equation must be valid for all z which implies that

0.3 = −0.5c0 − 0.2c1

0 = c0 + c1

giving solution c0 = −1, c1 = 1. As further

X(z) = − z

z − 0.2
+

z

z − 0.5

the Tab. 3.1 enables evaluation of

x(n) = −(0.2)nu(n) + (0.5)nu(n)

Computer processing of the partial fraction expansion method may be based upon the

procedure presented in Alg. 3.1. For realization in other languages than MATLAB compact

functions presented here must be realized in other way and in most cases by special

subroutines.

Algorithm 3.1 Evaluation of the partial fraction expansion for the rational function

X(z) =
[b(0) · · · b(N)][zN · · · 1]′

[a(0) · · · a(N)][zN · · · 1]′
(3.10)

• definition of vectors b and a of the rational function

• evaluation of vectors c,p and k of expansion

X(z) =
c0z

z − p0

+ · · · + cNz

z − pN

+ (k1z + k2z
2 + · · · )

by function

[c,p,k] = residue (b, a)

• as the inverse procedure can be realized by function

[b, a] = residue (c,p,k)

it can be used for connection of terms with complex conjugate poles to form
second order terms of partial fraction expansion with real coefficients only to
enable the following use of the Z-transform tables

Division method provides possibility of evaluation of individual members of the orig-

inal sequence based upon the knowledge of its Z-transform X(z) and the region of conver-

gence. In case of causal sequences the expansion of X(z) can be restricted to non-positive

powers of z in the form

X(z) = x(0)z0 + x(1)z−1 + x(2)z−2 + · · · (3.11)

with coefficients x(0), x(1), · · · defining the desired sequence.
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Example 3.4 Evaluate the inverse Z-transform of

X(z) =
0.3z

z2 − 0.7z + 0.1
for region of convergence defined by |z| > 0.5.

Solution: Dividing the rational function X(z) we obtain

+0.3z : (z2 − 0.7z + 0.1) = 0.3z−1 + 0.21z−2 + 0.117z−3 + · · ·
±0.3z ∓ 0.21 ± 0.030z−1

+ 0.21 − 0.030z−1

± 0.21 ∓ 0.147z−1 ± 0.0210z−2

+ 0.117z−1 − 0.0210z−2

± 0.117z−1 ∓ 0.0890z−2 ± 0.0117z−3

+ 0.0609z−2 − 0.0112z−3

The desired sequence has the following values:

x(n) = 0 for n ≤ 0

x(1) = 0.3

x(2) = 0.21
· · ·

Results of the example evaluated by Alg. 3.2 are presented in Fig. 3.3.
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FIGURE 3.3. Sequence {x(n)} for n = 1, · · · , L + 1 evaluated as the inverse Z-transform to
X(z) = (0.3z)/(z2 − 0.7z + 0.1) for L = 8 and the residuum sequence

3.2 Difference Equations and System Modelling

The linear shift invariant discrete system is an essential mathematical structure for the

approximation of most continuous real systems. It can be used for their modelling, analysis

and signal processing as well.

3.2.1 System Representation

The description of the linear shift invariant system can be given by the difference equation

in the general form

y(n) +
N∑

k=1

a(k)y(n − k) =
N∑

k=0

b(k)x(n − k) (3.13)
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with some possible zero coefficients. This time domain representation can be further mod-

ified to enable more convenient ways of digital signal processing.

The discrete transfer function (system function) can be derived from the Z-transform

of the difference Eq. (3.13) resulting in relation

Z[y(n)] +
N∑

k=1

a(k)Z[y(n − k)] =
N∑

k=0

b(k)Z[x(n − k)]

Using the translation property of the Z-transform we obtain

Y (z) +
N∑

k=1

a(k)z−kY (z) =
N∑

k=0

b(k)z−kX(z)

and the transfer function in the form

H(z) =
Y (z)

X(z)
=

N∑
k=0

b(k)z−k

1 +
N∑

k=1

a(k)z−k

(3.14)

This representation enables simple evaluation of the system output in the following steps

• description of the input sequence {x(n)} in the form of its Z-transform X(z)

• application of the transfer function H(z) for evaluation of the output sequence Z-

transform
Y (z) = H(z)X(z) (3.15)

• evaluation of the output sequence {y(n)} by the inverse Z-transform of Y(z)

Any method of the inverse Z-transform can be used in this stage.

Algorithm 3.2 Polynomial division for the evaluation of the sequence {x(n)} repre-
senting the inverse Z-transform in the form

X(z) =
[b(0) · · · b(N)][zN · · · 1]′

[a(0) · · · a(N)][zN · · · 1]′
(3.12)

= [x(0) · · · x(L)][z0z−1 · · · z−L]′ +
[r(L + 1) · · · r(L + N)][zN−L−1 · · · z−L]′

[a(0) · · · a(N)][zN · · · 1]′

• definition of vectors d and a where d = [b, zeros(1, L)] represents a new nu-
merator vector after the multiplication of the whole expression by zL to enable
expansion of the newly defined non-proper fraction to vector x connected with
non-negative powers of z and the remainder vector r.

• evaluation of values [x(0), · · · , x(L)] by function

[x, r] = decom (d, a)

• possible graphic representation of the evaluated sequence by function

plot(x)
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The unit sample response represents another possibility of system description. As X(z) =

1 for such a sequence the Z-transform of system output can be evaluated using (3.15) re-

sulting in Y (z) = H(z) which implies that the inverse Z-transform of H(z) stands for the

unit sample response {h(n)}. The transfer function for causal system is then defined by

relation
H(z) =

∞∑
n=0

h(n)z−n (3.16)

and it is equivalent to that defined by Eq. (3.14). As H(z) = Y (z)/X(z) it is obvious that

any input sequence {x(n)} implies system output {y(n)} in the form

y(n) =
∞∑

k=0

h(k)x(n − k) = h(n) ∗ x(n) (3.17)

referred as convolution of sequences {h(n)} and {x(n)}.
The system frequency response H(ejω) can be evaluated after the application of the

input sequence x(n) = ejωn to the system described by difference Eq. (3.13) or (3.17).

Using Eq. (3.17) it is obvious that

y(n) =
∞∑

k=0

h(k)ejω(n−k) = ejωn

∞∑
k=0

h(k)e−jωk = x(n)
∞∑

k=0

h(k)e−jωk (3.18)

Comparing Eq. (3.16) and (3.18) it is possible to express the frequency response

H(ejω) = H(z)|z=ejω (3.19)

having its magnitude and phase part.

Results described above imply the basic role of the transfer function H(z) in form of

Eq. (3.14) or (3.16) enabling the difference equation or frequency response evaluation.

Example 3.5 Use the transfer function

H(z) = 0.2
z + 1

z2 − z + 0.5
(3.20)

of a causal system to evaluate its difference equation, unit sample response and frequency

response.

Solution:

• As
H(z) =

Y (z)

X(z)
= 0.2

z + 1

z2 − z + 0.5
= 0.2

z−1 + z−2

1 − z−1 + 0.5z−2

we can find after the cross multiplication that

Y (z)(1 − z−1 + 0.5z−2) = 0.2X(z)(z−1 + z−2)

which after the inverse Z-transform results in the difference equation

y(n) − y(n − 1) + 0.5y(n − 2) = 0.2(x(n − 1) + x(n − 2))

• One of possibilities how to evaluate the unit sample response is to use the transfer

function to obtain
Y (z) = H(z) X(z)

Taking into account the unit sample Z-transform X(z) = 1 it is possible to use the

division method to evaluate separate terms of {h(n)}. As
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( + 0.2z + 0.2) : (z2 − z + 0.5) = 0.2z−1 + 0.4z−2 + 0.3z−3

− 0.2z ∓ 0.2 ± 0.1z−1

+ 0.4 − 0.1z−1

− 0.4 ∓ 0.4z−1 ± 0.2z−2

+ 0.3z−1 − 0.2z−2

− 0.3z−1 ∓ 0.3z−2 ± 0.15z−3

+ 0.1z−2 − 0.15z−3

the resulting sequence {h(n)}∞n=0 has values {0, 0.2, 0.4, 0.3, · · · }.
• The frequency response can be evaluated using Eq. (3.19) in form

H(ejω) = H(z) |z=ejω= 0.2
ejω + 1

e2jω − ejω + 0.5

After application of Euler relations it is possible to write

H(ejω) = 0.2
1 + cos(ω) + j sin(ω)

(cos(2ω) − cos(ω) + 0.5) + j(sin(2ω) − sin(ω))

The magnitude and phase of this frequency response for ω ∈ 〈0, π〉 is presented in

Fig. 3.4 together with the sketch of the given transfer function representation in the

complex plane showing its poles and values on the unit circle for z = ejω.
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FIGURE 3.4. Magnitude and phase frequency response of the discrete system with the transfer
function H(z) = 0.2(z + 1)/(z2 − z + 0.5) and its sketch in the complex plane.

Frequency response provides a very important information concerning the system be-

haviour with respect to the input signal frequency components. Computer processing of

the system response and frequency response based upon the knowledge of the discrete

transfer function can be summarized in Algorithm 3.3 and 3.4.

3.2.2 Linear Constant Coefficients Difference Equations

The classical solution of difference equations is very close to methods of solution of differ-

ential equations and it involves the estimation of the particular and homogenous solution

as well [36, p.16].
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Algorithm 3.3 System response evaluation for the transfer function

H(z) =
[b(0), b(1) · · · b(N)][1, z−1 · · · z−N ]′

1 + [a(1) · · · a(N)][z−1 · · · z−N ]′
(3.21)

to the input sequence
x = [x(0), x(1) · · · ]

• definition of vectors b, a and x.

• system output evaluation by function

y = filter(b, a,x)

• possible graphic output of the original and evaluated sequence (with two pictures
on the screen)

clg; subplot(211);
plot(x); plot(y)

The Z-transform method provides another possibility of a very simple way for solution

of the equation

y(n) +
N∑

k=1

a(k)y(n − k) = f(n) (3.23)

with a given set of initial conditions {y(−1), y(−2), · · · , y(−N)}. The solution consists in

principle of the following steps

• Z-transform application which transforms the difference equation into an algebraic

equation

• evaluation of Y (z) standing for the Z-transform of the solution

• inverse Z-transform application for evaluation of {y(n)}.

Algorithm 3.4 Frequency response evaluation of system defined by its transfer func-
tion

H(z) =
[b(0), b(1) · · · b(N)][1, z−1 · · · z−N ]′

1 + [a(1) · · · a(N)][z−1 · · · z−N ]′
(3.22)

• definition of vectors b and a.

• frequency response evaluation by function
[h,w] =freqz(b, a, n)

in n points between 0 and π defined in vector w with result in vector h.

• possible separate plots of magnitude and phase of the frequency response (with
two pictures on the screen)

clg; subplot(211);
plot(w, abs(h)); plot(w, angle(h))
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The Z-transform of real causal sequence {y(n)u(n)} can be defined as Y (z). To obtain

the Z-transform of the delayed truncated sequence we can evaluate

Z[y(n − k)u(n)] =
∞∑

n=−∞
y(n − k)u(n)z−n =

∞∑
n=0

y(n − k)z−n =
∞∑

m=−k

y(m)z−(m+k) =

=
−1∑

m=−k

y(m)z−(m+k) + z−k

∞∑
k=0

y(m)z−m

which implies that

Z[y(n − k)u(n)] =
−1∑

m=−k

y(m)z−(m+k) + z−kY (z)

with the first term enabling to apply initial conditions of Eq. (3.23).

Example 3.6 Evaluate the solution of the following linear constant difference equation

y(n) − 0.5y(n − 1) = 0.25n

for y(−1) = 1.

Solution: After the Z-transform we shall receive

Y (z) − 0.5(y(−1) + z−1Y (z)) =
1

1 − 0.25z−1

which implies that

Y (z) =
1

1−0.25z−1 + 0.5

1 − 0.5z−1
=

1.5 − 0.125z−1

(1 − 0.5z−1)(1 − 0.25z−1)
=

1.5z2 − 0.125z

(z − 0.5)(z − 0.25)

Using the partial fraction expansion method we obtain

Y (z) =
2.5z

z − 0.5
− z

z − 0.25

which implies the solution in the following form

y(n) = 2.5(0.5)n − (0.25)n

3.3 Discrete Fourier Transform and Signal Decomposition

Discrete signals and systems described by difference equations can be represented by Z-

transform enabling their simple analysis and further manipulation. Another way of signal

processing is based upon its decomposition into a linear combination of basis functions

[23, p.257]. In linear time invariant system various methods can be then applied separately

to signal components and results composed again. This method is essential in many en-

gineering applications enabling signal analysis, filtering of signal parts, adaptive signal

processing etc.

Physical bases of many signals enable their harmonic decomposition which implies that

the weighted sum of complex exponentials is used very often. Therefore the discrete Fourier

transform based upon the Fourier series for periodic signals is an essential mathematical

tool for the theoretical analysis of many digital signal processing methods and it enables

their implementation using an efficient algorithm of the fast Fourier transform [7] as well.
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3.3.1 Definition and Basic Properties

To explain the definition of the discrete Fourier transform we can start with representation

of periodic discrete-time signal {x(n)} with period N by the weighted sum of complex

exponentials in the form

x(n) =
1

N

N−1∑
k=0

X(k)ejk 2π
N

n (3.24)

for n = 0, 1, · · · , N − 1. This expression is in close connection with Fourier series applied

to continuous signals for the infinitive sum reduced to the finite sum of N terms only

caused by N distinct exponentials for frequencies

ωk = k
2π

N
, k = 0, 1, · · · , N − 1.

The multiplying constant 1/N in Eq. (3.24) has no substantial effect in this stage. To

evaluate terms X(k) we can multiply both sides of Eq. (3.24) by e−jl(2π/N)n and to sum

over n = 0, 1, · · · , N − 1 to obtain after the interchange of the summation order [30, p.88]

N−1∑
n=0

x(n)e−jl 2π
N

n =
1

N

N−1∑
k=0

X(k)
N−1∑
n=0

ej(k−l) 2π
N

n

Relation
1

N

N−1∑
k=0

ej(k−l) 2π
N

n =

{
1 for k − l = mN
0 for k − l �= mN

implies that

X(k) =
N−1∑
n=0

x(n)e−jk 2π
N

n (3.25)

This result can be also applied to finite sequences of N samples in case that we define

the periodic sequence based upon the periodic extension of original values. It is often

assumed that the nonzero period is for n ∈ 〈0, N − 1〉. The discrete Fourier transform is

then defined by the following relations.

Definition 3.2 Let us assume the finite sequence {x(n)} for n = 0, 1, · · · , N − 1. Its

discrete Fourier transform is then defined by relation

X(k) =
N−1∑
n=0

x(n)e−jk 2π
N

n (3.26)

for k = 0, 1, · · · , N − 1.

The inverse transform can be evaluated by relation

x(n) =
1

N

N−1∑
k=0

X(k)ejk 2π
N

n (3.27)

for n = 0, 1, · · · , N − 1 and discrete frequencies ωk = k2π/N . Relation (3.26) defines in

fact coefficients of Eq. (3.27) related to separate frequency components.

Example 3.7 Evaluate the discrete Fourier transform of a given sequence

x(n) =

{
1 for 0 ≤ n ≤ 2
0 for 3 ≤ n ≤ 8

(3.28)
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FIGURE 3.5. Discrete Fourier transform of a given sequence

Solution: Using the Def. 3.2 we can write

X(k) =
9∑

n=0

x(n)e−jk(2π/9)n =
2∑

n=0

e−jk(2π/9)n

which is a geometrical sequence implying

X(k) =
1 − e−jk(2π/9)3

1 − ejk(2π/9)
=

e−jk(π/3)

e−jk(π/9)

ejk(π/3) − e−jk(π/3)

ejk(π/9) − e−jk(π/9)

Using Euler relations we shall receive

X(k) = e−jk(2π/9) sin(k(π/3))

sin(k(π/9))
(3.29)

Graphical representation of results in presented in Fig. 3.5.

Computer processing of the discrete Fourier transform can be based upon Algorithm 3.5

using simple MATLAB notation.

Discrete Fourier transform is closely related to the Z-transform which implies simi-

lar properties of both transforms as well. As the finite length sequence {x(n)} for n =

0, 1, · · · , N − 1 has its Z-transform according to the definition in the form

X(z) =
N−1∑
n=0

x(n)z−n (3.30)

the comparison of Eqs. (3.30) and (3.26) results in relation

X(k) = X(z) |z=ejk2π/N (3.31)

for k = 0, 1, · · · , N − 1. This result implies that the discrete Fourier transform represents

equidistant values of X(z) on the unit circle in the complex plane [30, p.90].

Example 3.8 Evaluate the discrete Fourier transform of the exponential sequence

x(n) =

{
an for n = 0, 1, · · · , N − 1
0 for n < 0 and n ≥ N
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Algorithm 3.5 Evaluation of the direct and inverse discrete Fourier transform of
sequence {x(n)}, n = 0, 1, · · · , N − 1.

• definition of vector x = [x(0), · · · , x(N − 1)]

• discrete Fourier transform evaluation

X = fft(x)

• graphic separate representation of the real and imaginary part

subplot(211)
plot((0 : N − 1)./N , real(X))
plot((0 : N − 1)./N , imag(X))

• inverse discrete Fourier transform evaluation

y = ifft(X)

Solution: As

X(z) =
N−1∑
n=0

anz−n =
1 − (az−1)N

1 − az−1
=

zN − aN

zN − azN−1

it is possible to evaluate

X(k) = X(z) |z=ejk2π/N =
ejk2π − aN

ejk2π − aejk2π(N−1)/N
=

1 − aN

1 − aejk2π(N−1)/N

for k = 0, 1, · · · , N − 1. The geometrical view presenting real and imaginary part of the

discrete Fourier transform and its absolute value as a special case of the Z-transform on

the unit circle in the complex plane for N = 24 discrete frequencies is given in Fig. 3.6.

Separate plots of real and imaginary parts of the discrete Fourier transform are presented

in Fig. 3.7 in connection with the complex plane interpretation again.
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The graphic interpretation of the discrete Fourier transform given in the previous ex-

ample enables better understanding of the frequency axis description given in Fig. 3.8

and it presents its symmetry properties as well. As terms ejk2π/N and ej(N−k)2π/N for

k = 0, 1, · · · , N are complex conjugates the Eq. (3.26) implies that X(k) and X(N − k)

are for real values of {x(n)} in the same relation [39, p.252] which means that
• real(X(k)) is an even function in such a sense that real(X(k)) = real(X(N − k))

• imag(X(k) is an odd function in such a sense that imag(X(k)) = −imag(X(N − k))

• abs(X(k)) is an even function

The definition of even and odd function is based upon the periodic extension of the

analysed values. It is obvious that owing to this properties it is sufficient to evaluate X(k)

for k = 0, 1, · · · , N/2 only.

Further fundamental properties of the discrete Fourier transform of a sequence {x(n)}, n =

0, 1, · · · , N − 1 can be stated in the following form [39, p.258].
1. Linearity

DFT [a1x1(n) + a2x2(n)] = a1DFT [x1(n)] + a2DFT [x2(n)] (3.32)

2. Translation
DFT [x(n] = X(k) ⇒ DFT [x(n − m)] = e−jkm 2π

N X(k) (3.33)

3. Convolution in time domain

DFT [
N−1∑
k=0

x(k)y(n − k)] = DFT [x(n)] · DFT [y(n)] (3.34)

Proofs of these properties result from the Def. 3.2.
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 � f(k)=ω(k)/(2π) 

0 2π2π/N 4π/N

� k

� ω(k)=k 2π/Ν

� f(k)=ω(k)/(2π)

0 2π2π/N// 4π/N//

0 1 2 N/2 N-1 N

0 1/N 2/N 0.5 1

π

FIGURE 3.8. Frequency axis interpretation
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3.3.2 Fast Fourier transform

Definition of the discrete Fourier transform (DFT) enables the estimation of basic nu-

merical calculations of this method reaching the order of N2 for complex multiplications

and additions. The fast Fourier transform (FFT) algorithm reduces the required number

of arithmetic operations to the order of (N/2)log2(N) which for N = 512 means the

approximate reduction to 1% of the original value connected with time requirements as

well.

Let us assume sequence x(n)N−1
n=0 with its length N being a power of 2 and its discrete

Fourier transform
X(k) =

N−1∑
n=0

x(n)e−jk 2π
N

n.

The first stage of the algorithm [23, p.272] is based upon its breaking into the sum of

even-indexed and odd-indexed data {x(n)} to define the following expression

X(k) =

N/2−1∑
n=0

x(2n)e−jk 2π
N

2n +

N/2−1∑
n=0

x(2n + 1)e−jk 2π
N

(2n+1) (3.35)

which results in

X(k) =

N/2−1∑
n=0

x(2n)e−jk 2π
N/2

n + e−jk 2π
N

N/2−1∑
n=0

x(2n + 1)e−jk 2π
N/2

n (3.36)

It can be seen that computation of the DFT of length N has been reduced to the computa-

tion of two transforms of length N/2 and an additional N/2 complex multiplications for the

complex exponential outside the second summation considering k = 0, 1, · · · , N/2 − 1. It

would appear at first sight that it is necessary to evaluate Eq. (3.36) for k = 0, 1, · · · , N−1.

However it is not the truth as may be seen by considering result for indices k+N/2 having

the following form

X(k +
N

2
) =

N/2−1∑
n=0

x(2n)e−j(k+ N
2

) 2π
N/2

n + e−j(k+ N
2

) 2π
N

N/2−1∑
n=0

x(2n + 1)e−j(k+ N
2

) 2π
N/2

n

which owing to the periodicity results in

X(k +
N

2
) =

N/2−1∑
n=0

x(2n)e−jk 2π
N/2

n − e−jk 2π
N

N/2−1∑
n=0

x(2n + 1)e−jk 2π
N/2

n (3.37)

Comparing Eqs. (3.36) and (3.37) it is obvious that the only difference is in the sign be-

tween the two summations. Thus it is necessary to evaluate Eq. (3.36) for k=0, 1,· · ·, N/2−1

only storing the result of the two summations separately for each k. The values of X(k)

and X(k + N/2) can then be evaluated as the sum and difference of the two summations

as indicated by Eqs. (3.36) and (3.37). Thus the computational load for an N-point DFT

has been reduced from N2 operations to 2(N/2)2 + N/2. The flow chart for incorporating

this decomposition into the computation of an N = 8 point DFT is presented in Fig. 3.9.

The same process can be carried out on each of the N/2 points of the transform to

reduce further the computations. The flow chart for incorporating this extra stage of

decomposition into the computation of the N = 8 point DFT is shown in Fig. 3.10. It

can be seen that if N = 2M then the process can be repeated M times to reduce the
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FIGURE 3.9. The first stage of the fast Fourier transform decomposition for N = 8

computation to that of evaluating N single point DFTs. The final flow chart for N = 8

presented in Fig. 3.10 is based upon the ”butterfly” structure of the N = 2 point DFT of

a sequence {s(0), s(1)} evaluating

S(0) = s(0) + s(1)e−j0 2π
2 = s(0) + s(1) (3.38)

S(1) = s(0) + s(1)e−j1 2π
2 = s(0) − s(1) (3.39)

It is obvious that for the algorithm presented above it is necessary to shuffle the order of

the input data. This data shuffle is usually termed ”bit reversal” for reasoning that are

clear if the indices of the shuffle data are written in binary as shown in Tab. 3.2.

It can be seen that the process reduces at each stage the computation by half but

introduces an extra N/2 multiplications to account for the complex exponential term

outside the second summation term in the reduction. Thus for the condition of N = 2M

the process can be repeated M times to reduce the computation to that of evaluating

N single point DFTs which require no computation. However at each of the M stages of

reduction an extra N/2 multiplications is introduced so that the total number of arithmetic

operations require to evaluate an N-point DFT is (N/2)log2(N).

binary 000 001 010 011 100 101 110 111
bit reversal 000 100 010 110 001 101 011 111
decimal 0 4 2 6 1 5 3 7

TABLE 3.2. Bit reversal used in the algorithm of the fast Fourier transform.

The FFT algorithm has a further significant advantage over the direct evaluation of

the DFT expression in the fact that computation can be performed on-place. This has

been illustrated in the final flow chart where it can be seen that after two data values

have been processed by the butterfly structure those data are not required again in the

computation and they may be replaced in the computer store with the values at the

output of the butterfly structure. Computational algorithm of the fast Fourier transform

is used in Algorithm 3.5 presented before.
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FIGURE 3.10. The first and second stage of the fast Fourier transform decomposition for N = 8

It is obvious from the definition of the direct and inverse discrete Fourier transform

that the fast algorithm applied to obtain transformed values can be used with slight

modifications in both directions.

3.3.3 Signal Decomposition and Reconstruction

Problem of the sampling rate estimation can be simply studied in connection with one

harmonic component of the continuous-time periodic signal in the form

xa(t) = cos(Ωat) (3.40)

sampled with the sampling period Ts to define sequence

x(n) = cos(ΩanTs) (3.41)

for n = 0, 1, · · · . Instead of the analogue frequency Ωa [rad/s] we can introduce normalized

digital frequency ωd = ΩaTs [rad] implying

x(n) = cos(ωdn) (3.42)

Let us restrict our attention now to the finite length sequence having N samples and let

us apply direct and inverse Fourier transform for its decomposition and reconstruction.

The signal decomposition involves the application of the DFT definition in the form

X(k) =
N−1∑
n=0

x(n)e−jk 2π
N

n (3.43)

for the unitless frequency index k = 0, 1, · · · , N −1 which can be related according to the

previous notes to

• digital frequency in [rad] : ωk = k2π/N ∈ 〈0, 2π)

• digital frequency in [Hz] : fk = ωk/(2π) = k/N ∈ 〈0, 1)

• analogue frequency in [rad/s] : Ωk = ωk/Ts ∈ 〈0, 2π/Ts)
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FIGURE 3.11. Signal decomposition and reconstruction: (a) Continuous signal xa(t) = cos(Ωat)
for Ωa = 2 π faπ [rad/s] for fa = 0.2[Hz] and t ∈< 0, 10) [s] (b) Discrete signal x(n) = xa(n Ts),
n = 0, 1, · · · , N − 1 for sampling period Ts = 0.5 [s] (fs = 1/Ts = 2[Hz], N = 20 and resulting
normalized digital frequency fd = fa/fs = 0.1 (c) Real part of X(k) defined as a DFT of
{x(n)} and presented for k = 0, 1, · · · , N − 1 (d) Result of the inverse DFT of X(k) for signal
reconstruction combined with digital interpolation

Using further for simplicity real even sequence {x(n)}N−1
n=0 with the number of its val-

ues equal to the multiple of the signal period the evaluation of the DFT results in the

real even sequence {X(k)}N−1
k=0 [30, p.93]. The whole process of sampling and analysis

for such a harmonic sequence with its digital frequency ωd = 0.2π (fd = 0.1) and

N = 20 samples is given in Fig. 3.11 (a), (b) and (c). The result of the DFT is pre-

sented for ωk = k2π/N, k = 0, 1, · · · , N/2 only taking into account that evaluations for

indices greater than k = N/2 related to frequencies greater then ωk = π are redundant

owing to the periodicity properties of the DFT.

Signal reconstruction is based upon the inverse discrete Fourier transform in the

form

x(n) =
1

N

N−1∑
k=0

X(k)e−jk 2π
N

n (3.44)

for n = 0, 1, · · · , N − 1. Using the previous example it is possible to apply this equation

to the sequence in Fig. 3.11 (d) given by solid lines. To obtain more values of the recon-

structed sequence it is possible to use digital interpolation for evaluation of values between

these samples given in Fig. 3.11 (d) by dotted lines. The principle of this interpolation

[40, p.80] is based on the following statements with their graphic interpretation restricted

in Fig. 3.12 for an even sequence with real part of the DFT only

• Real sequence {x(n)}N−1
n=0 derived from a band limited continuous signal xa(t) with

sampling Ts has its DFT X(k) decreasing to zero for k → N/2 and owing to proper-

ties of the discrete Fourier transform X(N−k) = conj(X(k)) for k = 0, 1, · · · , N−1.
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• Real sequence {v(m)}M−1
m=0 where M = N · Ns derived from the same band limited

continuous signal xa(t) with sampling Ts/Ns has its DFT V (k) closely related to the

original one with N · (Ns − 1) inserted zero values as no new frequency components

are present

{V (k)}M−1
k=0 =

M

N
{X(0), X(1), · · · , X(N/2−1), 0, 0, · · · , 0, X(N/2), · · · , X(N −1)}

(3.45)

Constant M/N introduced in Eq. (3.45) is caused by the different length of sequences

{x(n)} and {v(n)} which affects the multiplication factor in the definition of the inverse

DFT. Fig. 3.12 (b) and (e) explain that the analogue resolution frequencies are the same

for the DFT of both sequences {x(n)} and {v(n)}. Computer processing of the digital

interpolation (for even N) can be based upon the Algorithm 3.6 with all indices shifted

by one to have their positive values only. Similar process can be designed for odd N .

We have supposed till now the digital frequency ωd slow enough enabling signal decom-

position and reconstruction as well. It is obvious from Fig. 3.11 that when frequency ωd is
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Algorithm 3.6 Digital interpolation for signal reconstruction using the inverse DFT

• definition of vector x = [x(1), x(2), · · · , x(N)] and the subsampling index NS

• discrete Fourier transformm evaluation

X = fft (x)
defining sequence X = [X(1), X(2), · · · , X(N/2), X(N/2 + 1) · · · , X(N)]

• new sequence definition of the length M = N · Ns with inserted zero values

V = M
N

[X(1 : N/2), zeros (1, N ∗ (NS − 1),X(N/2 + 1 : N)]

• inverse discrete Fourier transform

y = ifft (V)

changing from zero to π the DFT is able to distinguish this frequency component (eval-

uating its complex conjugate in the range 〈π, 2π) as well). But when ωd is grater than π

the interpretation is not unique already. This situation is given in Fig. 3.13 for ωd = 1.8π

[rad]. Values of this discrete signal are the same as those in Fig. 3.11 for ωd = 0.2π [rad]

and the reconstruction process provides signal given in Fig. 3.13 with its digital frequency

in range 〈0, π) different from the original signal in this case. This frequency reduction is

often presented as aliasing and it results in the signal reconstruction of the lowest possible

frequency component defined by the given sequence as given in Fig. 3.14
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FIGURE 3.13. Signal decomposition and reconstruction: (a) Continuous signal xa(t) = cos(Ωat)
for Ωa = 2 π faπ [rad/s] for fa = 1.8[Hz] and t ∈< 0, 10) [s] (b) Discrete signal x(n) = xa(n Ts),
n = 0, 1, · · · , N − 1 for sampling period Ts = 0.5 [s] (fs = 1/Ts = 2[Hz], N = 20 and resulting
normalized digital frequency fd = fa/fs = 0.9 (c) Real part of X(k) defined as a DFT of
{x(n)} and presented for k = 0, 1, · · · , N − 1 (d) Result of the inverse DFT of X(k) for signal
reconstruction combined with digital interpolation
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FIGURE 3.14. Continuous signal xa(t)=cos(2π fa t) for fa =0.1, 0.9 and 1.1 [Hz] resulting in the
same discrete signal x(n)=cos(2π fd n) for sampling period Ts =1 and fd =fa causing aliasing.

In general any continuous signal of frequency Ωa > π/Ts is aliased to the frequency

range 〈0, π/Ts). To avoid such an aliasing it is necessary to choose the sampling period

Ts〈π/Ωa or the sampling frequency fs > 2fa confirming the sampling theorem presented

in the previous chapter. The highest frequency component of a signal implies in this case

the necessary sampling rate for further digital signal processing. To reduce the number of

the discrete signal values it is sometimes possible to reduce the high frequency components

in the analogue signal already and to sample such a prefiltered signal.

3.4 Method of the Least Squares and the Gradient Method

The previous mathematical background was devoted to various methods of signal and

system description based on discrete transforms. Further mathematical methods enabling

signal and system modelling are based upon the parameters estimation by the least square

method. This principle is essential in many engineering applications including signal ap-

proximation, prediction and adaptive filtering as well. Its specific modifications will be

discussed in further chapters and we shall summarize here basic principles only resulting

in finite and iterative methods [43], [40], [12] using nonorthogonal and orthogonal basis

functions during the search process and parameters evaluation [25], [20].

3.4.1 General Principle of the Least Square Method

Basic principle of the least square method can be explained on approximation of given

values {x(n), y(n)}N−1
n=0 by a linear combination of basis functions {gj(x)}M−1

j=0 in the form

f(x) =
M−1∑
j=0

wjgj(x) (3.46)

Main problems of the approximation can be summarized in the following items

• estimation of the general form of function (3.46)

• evaluation of coefficients w0, w1, · · · , wM−1 by a chosen method

The first problem can be often solved taking into account physical principle of approxi-

mated values and the second one presumes the choice of a proper criterium.

Function f(x) is often looked upon as a continuous function of a variable x but in

digital signal processing applications its discrete values are used only defined on a sequence
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{x(n)}N−1
n=0 . This special case of the approximation problem is often referred to as signal

modelling. In case that we further assume gj(x(n)) = x(n − j) it is possible to rewrite

expression 3.46 to the form

f(n) =
M−1∑
j=0

wjx(n − j) (3.47)

with f(n) standing for f(x(n)) in fact. This specific case corresponds to the system repre-

sentation by the impulse response mentioned before which implies that classical methods

of the least square approximation can be applied in both cases. Comparison of a general

and specific function defined by Eq. (3.46) and (3.47) for a given set of values {x(n)} is

presented in Fig. 3.15.

The method of the least squares is used for the minimization of the total squared error

between given and approximated values visualized in Fig. 3.16 for a chosen example and

having generally form

J(w0, w1, · · · , wM−1) =
N−1∑
n=0

ε(n)2 =
N−1∑
n=0

(y(n) − f(x(n))2 =
N−1∑
n=0

(y(n) −
M−1∑
j=0

wjgj(x(n)))2

(3.48)

As J is a function of variables w0, w1, · · · , wM−1 it is possible to find their values mini-

mizing the total sum (3.48) standing for the error-performance surface in Fig. 3.16 and

defining coefficients of function (3.46) in this way.

Theorem 3.1 Let us assume a sequence {x(n), y(n)}N−1
n=0 . Then the coefficients {wj}M−1

j=0

of the approximation function (3.46) for a given basis {gj(x)}M−1
j=0 are given by the solution

of the set of M linear algebraic equations

Rw = p (3.49)

where

R =

⎡
⎣

∑
g0(x(n))g0(x(n)) · · · ∑

g0(x(n))gM−1(x(n))
· · · · · · · · ·∑

gM−1(x(n))g0(x(n)) · · · ∑
gM−1(x(n))gM−1(x(n))

⎤
⎦,

w =

⎡
⎣ w0

· · ·
wM−1

⎤
⎦, p =

⎡
⎣

∑
y(n)g0(x(n))

· · ·∑
y(n)gM−1(x(n))

⎤
⎦

with all summations for n = 0, 1, · · · , N − 1.
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FIGURE 3.15. Comparison between approximation function from the general and signal pro-
cessing point of view
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Proof: To minimize the sum of squares in form (3.48) it is necessary to evaluate its partial

derivatives with respect to coefficients {wj}M−1
j=0 and to put them equal to zero which

means that
∂J

∂wi

≡ 2
N−1∑
n=0

(y(n) −
M−1∑
j=0

wjgj(x(n))gi(x(n))) = 0

for i = 0, 1, · · · ,M − 1. Rearranging this equation we shall obtain
M−1∑
j=0

wj

N−1∑
n=0

gj(x(n))gi(x(n)) =
N−1∑
n=0

y(n)gi(x(n))

The last expression is equivalent to (3.49) and it represents the set of M linear algebraic

equations defining coefficients w0, w1, · · · , wM−1.

Example 3.9 Evaluate coefficients of the approximation function in the form

f(x) = w0 + w1x

for a given sequence {x(n), y(n)}N−1
n=0 .

Solution: Using Eq. (3.48) it is possible to express the sum of squares in the form

J(w0, w1) =
N−1∑
n=0

(y(n) − w0 − w1x(n))2

The condition for minimizing this expression can be stated in the form

∂J

∂w0

≡ −2
N−1∑
n=0

(y(n) − w0 − w1x(n)) = 0

∂J

∂w1

≡ −2
N−1∑
n=0

(y(n) − w0 − w1x(n))x(n) = 0



3. Mathematical Background 41

which results in the set of equation

w0N + w1

∑
x(n) =

∑
y(n)

w0

∑
x(n) + w1

∑
x(n)2 =

∑
x(n)y(n)

with all summations for n = 0, 1, · · · , N − 1 defining coefficients w0 and w1. Graphic

results of this example for a given sequence of values is presented in Fig. 3.16.

The set (3.49) of linear algebraic equations is not well conditioned which might cause

numerical problems in its solution. It is one of reasons why orthogonal basis functions are

used as well.

Definition 3.3 The sequence of functions {pj(x)}M−1
j=0 is said to be orthogonal with respect

to a given sequence {x(n)}N−1
n=0 in case that

N−1∑
n=0

pi(x(n))pj(x(n))

{
= 0 for i �= j
�= 0 for i = j

(3.50)

The sum (3.50) represents scalar multiplication in fact referred to as (pi(x), pj(x)) very

often which substantially simplifies the approximation problem stated in the next theorem.

Theorem 3.2 Let as assume a sequence {x(n), y(n)}N−1
n=0 . Then the coefficients {wj}M−1

j=0

of the approximation function

f(x) =
M−1∑
j=0

wjpj(x) (3.51)

for given orthogonal basis functions {pj(x}M−1
j=0 with respect to the sequence {x(n)}N−1

n=0 are

defined by relation

wj =

N−1∑
n=0

y(n)pj(x(n))

N−1∑
n=0

pj(x(n))pj(x(n))

(3.52)

for j = 0, 1, · · · ,M − 1.

Proof of this statement is based upon that of Theorem 3.1 with the matrix G reduced to

the diagonal matrix with zero nondiagonal elements owing to the definition of orthogonal

functions. As no set of equations is solved in this case it is possible very simply to evaluate

any further coefficient wj to improve the approximation with no change of coefficients

defined before.

A typical example of the error-performance surface in this case is presented on Fig 3.17

for the linear approximation. The comparison of this sketch with that in Fig. 3.16 for

the nonorthogonal bases functions illustrates that orthogonality changes positions of axis

only with no affect to a very flat minimum of the surface.

Definition of the set of orthogonal basis functions {pj(x)}M−1
j=1 can be based upon the

Gramm - Schmidt process [25] applied to the nonorthogonal set of functions {gj(x)}M−1
j=0 .

The whole process can be summarized in the following way using the notation for scalar

multiplication mentioned before
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FIGURE 3.17. Error-performance surface for linear approximation of a given sequence of N = 5
values {x(n), y(n)} by function f(x(n)) = w0 +w1(x(n)−mean(x)) involving the set of orthog-
onal basis functions {1,x − mean(x)} for given values {x(n)}

• definition of

p0(x) = g0(x)

• estimation of

p1(x) = g1(x) − Λ01p0(x)

orthogonal to p1(x) implying that

(p1(x), p0(x)) ≡ (g1(x), p0(x)) − Λ01(p0(x), p0(x)) = 0

Λ01 =
(g1(x), p0(x))

(p0(x), p0(x))

• estimation of

p2(x) = g2(x) − Λ02p0(x) − Λ12p1(x)

orthogonal to p1(x) and p2(x) implying that

(p2(x), p0(x)) ≡ (g2(x), p0(x)) − Λ02(p0(x), p0(x)) − Λ12(p1(x), p0(x)) = 0

Λ02 =
(

g2(x), p0(x))
(p0(x), p0(x))

and

(p2(x), p1(x)) ≡ (g2(x), p1(x)) − Λ02(p0(x), p1(x)) − Λ12(p1(x), p1(x)) = 0

Λ12 =
(

g2(x), p1(x)
)(p1(x), p1(x))

The same process can be applied for further functions in the same way as well.

Example 3.10 Evaluate coefficients of the approximation function in the form

f(x) = w0p0(x) + w1p1(x)

for a given sequence {x(n), y(n)}N−1
n=0 and orthogonal bases functions {p0(x), p1(x)} defined

by nonorthogonal functions g0(x) = 1 and g1(x) = x.

Solution: Using the Gramm-Schmidt process described before it is possible to define

p0(x) = g0(x) = 1

p1(x) = g1(x) − Λ01p0(x)
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where

Λ01 =
(g1(x), p0(x))

(p0(x), p0(x))
=

N−1∑
n=0

x(n)

N

The approximation function has therefore the following form

f(x) = w0 + w1(x − Λ01)

where according to Eq. (3.52)

w0 =
1

N

N−1∑
n=0

y(n)

w1 =

N−1∑
n=0

y(n)(x(n) − Λ01)

N−1∑
n=0

(x(n) − Λ01)
2

Graphic results of this example for a given sequence of values is presented in Fig. 3.16.

Examples 3.9 and 3.10 explain that the same approximation function can be evaluated in

two possible ways. Nonorthogonal basis functions results in the set of algebraic equations

while orthogonal basis functions enable direct evaluation of coefficients after the previous

orthogonalization process.

3.4.2 The Steepest Descent Method

In case of the linear approximation the basic method described in the previous section

can be used. In more general case and nonlinear approximation function other methods

must be applied. We shall describe now very briefly the gradient method used very often

in many applications involving optimization problems of various objective functions.

The total squared error given by Eq. (3.48) presented before is a function of M variables

{w0, w1, · · · , wM−1} in the form

J(w0, w1, · · · , wM−1) =
N−1∑
n=0

(y(n) −
M−1∑
j=0

wjgj(x(n)))2 (3.53)

or in the equivalent matrix notation

J(w) = (y − G′w)′(y − G′w) (3.54)

where

w = [w0, w1, · · · , wM−1]
′

y = [y(0), y(1), · · · , y(N − 1)]′

x = [x(0), x(1), · · · , x(N − 1)]′

and

G =

⎡
⎣ g0(x

′)
· · ·

gM−1(x
′)

⎤
⎦=

⎡
⎣ g0(x(0)) · · · g0(x(N − 1))

· · · · · · · · ·
gM−1(x(0)) · · · gM−1(x(N − 1))

⎤
⎦

with an apostrophe standing for matrix or vector transposition.
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To find the optimum vector w defining the minimum value of function (3.54) assumes

the evaluation of the gradient vector

∂J(w0, · · · , wM−1)

∂wi

= 2
N−1∑
n=0

(y(n) −
M−1∑
j=0

wjgj(x(n)))gi(x(n)) (3.55)

resulting in the following matrix notation

∂J(w)

∂wi

= −2G(i, :)(y − G′w) (3.56)

where G(i, :) stands for the i-th row of matrix G and i = 0, 1, · · · ,M−1 or in the compact

form
q =

∂J(w)

∂w
= −2G(y − G′w) = 2(Rw − p) (3.57)

where R = GG′, p = Gy (3.58)

The optimum vector w = w∗ has such values for which its gradient is equal to zero

resulting in Eq. (3.49) in the form
Rw∗ = p (3.59)

discussed in the previous section already.

Using this notation for the optimum gradient vector it is possible to use it in Eq. (3.54)

which provides another expression for the sum of squares based on the weight deviation

vector

v = w − w∗ (3.60)

As

J(w) = (y − G′w)′(y − G′w) = (y′ − w′G)(y − G′w) =

= y′y − w′Gy − y′G′w + w′GG′w

it is possible to use (3.58) and (3.60) to find

J(w) = y′y − (v + w∗)′p − p′(v + w∗) + (v + w∗)′R(v + w∗) =

= y′y − v′p − (w∗)′p − p′v − p′w∗ + v′Rv + v′Rw∗ + (w∗)′Rv + (w∗)′Rw∗

Using (3.59) it follows that v′Rw∗ = v′p and (w∗)′Rw∗ = (w∗)′p and as R′ = R it is

possible to express (w∗)′Rv = p′v which results in the following relation

J(w) = y′y − (w∗)′Rw∗ + v′Rv (3.61)

or
J(w) = Jmin(w) + v′Rv (3.62)

The last expression is used very often to evaluate the error-performance surface around

its minimum value and to find gradients for further processing as well.

We can visualize the dependence of the squared error on elements of vector w by a

sketch in Fig. 3.18 for M = 2 elements only and to design an alternative procedure to the

finite least square method referred to as the method of the steepest descent summarised

in Algorithm 3.7 for the approximation problem.

Example 3.11 Evaluate the coefficients of the approximation function in the form

f(x) = w0 + w1x (3.65)

for a given sequence {x(n), y(n)}N−1
n=0 .
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FIGURE 3.18. Error-performance surface for the linear approximation of a given se-
quence y = 2 + 3 ∗ x with the additive random noise and random values of vector
x = [x(0), x(1), · · · , x(N − 1)]′ for N = 50 by function f(x) = w0 + w1x and results of the
steepest descent search with gradient evaluated both for the whole set of given values and esti-
mated separately for each of approximated values with the initial estimate w = [1.5, 2]

.

Algorithm 3.7 The steepest descent method applied for approximation of N val-
ues y = y(x) for x = [x(0), · · · , x(N − 1)]′ by sequence f = w′G with weights
w = [w0, · · · , wM−1]

′ minimizing the objective function

J(w) = (y − G′w)′(y − G′w)

for a given set {g0, · · · , gM−1} of M basis functions defining matrix

G = [g0(x
′), · · · , gM−1(x

′)]′

• definition of vectors x, y and matrix G of values of basis functions

• estimation of the initial guess of coefficients w

• iterative evaluation of

– the gradient vector
q = −2 ∗ G ∗ (y − G′ ∗ w) (3.63)

– new estimate of coefficients in direction opposite to that of the gradient
vector for a given convergence factor c

w = w − c ∗ q (3.64)
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Solution: Matrix G defined by Eq. (3.54) has values

G =

[
x′ · ∧0
x′ · ∧1

]
=

[
1 1 · · · 1

x(0) x(1) · · · x(N − 1)

]
(3.66)

with symbol ·∧ defining that each element of a given vector is raised to the given power

and it implies values of gradient vector (3.57) used in the iterative Algorithm ??. Results

for a chosen artificial sequence y = 2 + 3 ∗ x with the additive random noise and random

values of vector x = [x(0), x(1), · · · , x(N − 1)]′ for N = 50 are presented in Fig. 3.18

for gradient evaluated for the whole set of given values and initial estimate of weights

w = [1.5, 2].

The same principle of the gradient search can be applied in various modifications to

any objective function and other problems as well. In context of signal processing and

adaptive filtering the method of the steepest descent is modified to much simple form but

a slower process of convergence, too [43, 12].

Let us consider a single squared error of Eq. (3.53) in the form

ε(n)2 = (y(n) −
M−1∑
j=0

wjgj(x(n)))2 (3.67)

as an estimate of the mean of squared error used for the gradient evaluation before [43,

p.100]. The gradient estimate for each n can be then written in the form

q̂(n) =

⎡
⎢⎣

∂ε(n)2

∂w0· · ·
∂ε(n)2

∂wM−1

⎤
⎥⎦ = 2ε(n)

⎡
⎢⎣

∂ε(n)
∂w0· · ·

∂ε(n)
∂wM−1

⎤
⎥⎦ = −2ε(n)

⎡
⎣ g0(x(n))

· · ·
gM−1(x(n))

⎤
⎦ (3.68)

It is obvious that

q =
N−1∑
n=0

q̂(n) (3.69)

enabling to evaluate the gradient from its estimates. The whole process for such a modified

gradient method is given in Algorithm 3.8.

The convergence factor c has the same meaning as before and it regulates the speed and

stability of convergence. As the estimates of the gradient vector are imperfect it is possible

to expect noisy adaptive process not following the true line of the steepest descent. Results

for the previous example with M = 2 elements of vector w only are given in Fig. 3.18.

The choice of orthogonal basis functions can improve the whole process of adaptation.

Similar method of that described before can be applied in case of signal processing

applications. Defining the basis functions in gj(x(n)) = x(n − j) it is possible to find the

estimate of values {y(n)} in the same way for the objective function in the form

J(w0, w1, · · · , wM−1) =
N−1∑
n=0

ε(n)2 =
N−1∑
n=0

(y(n) −
N−1∑
j=0

wjx(n − j))2 (3.72)

As the sequence of values {x(n), y(n)} is usually very long the approximate gradient

method is used very often. The estimate of the gradient vector given by Eq. (3.72) can

be then stated in the following form

q̂(n) = −2ε(n)

⎡
⎢⎢⎣

x(n)
x(n − 1)

· · ·
x(n − M + 1)

⎤
⎥⎥⎦ (3.73)
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Algorithm 3.8 The gradient search applied for approximation of N values y = y(x)
for x = [x(0), · · · , x(N − 1)]′ by sequence f = w′G with weights w = [w0, · · · , wM−1]

′

minimizing the objective function

J(w) = (y − G′w)′(y − G′w)

for a given set {g0, · · · , gM−1} of M basis functions defining matrix

G = [g0(x
′), · · · , gM−1(x

′)]′

• definition of vectors x, y and matrix G of values of basis functions

• estimation of the initial guess of coefficients w

• iterative evaluation for each n of

– the estimate of the gradient vector

q̂(n) = −2G(:, n) ∗ (y(n) − G(:, n)′ ∗ w) (3.70)

– new estimate of coefficients in direction opposite to that of the gradient
vector for a given convergence factor c

w = w − c ∗ q̂ (3.71)

defining the iterative process

wnew = wold − cq̂(n) (3.74)

The sample process of adaptation for M = 2 weights is presented in Fig. 3.19.

The mean least square principle and gradient methods are essential in many signal

processing applications and they are closely related to the classical Newton method as

well. Their more detail discussion will be presented further.
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FIGURE 3.19. Signal modelling of a chosen sequence y : y(n) = 3x(n) + 2x(n − 1)
with the additive random noise for N = 50 random values of vector x by values
{f : f(n) = w0x(n) + w1x(n − 1)} with weights continuously updated using the gradient es-
timate and initial guess of vector w = [1.5, 2]
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3.5 Summary

Z-transform stands for a basic mathematical tool in signal processing methods enabling

representation of a signal {x(n)} in complex domain by a function X(z) of complex

variable z. Direct transform is based upon its definition while for the inverse transform

usually indirect methods are used based upon the partial fraction expansion and polyno-

mial division. These techniques may be simplified by various computer routines including

MATLAB functions as well.

Application of Z-transform covers various possibilities of system description including

discrete transfer function and frequency response function using the complex plane rep-

resentation. Z-transform is often used to simplify the solution of difference equations,

too.

Discrete Fourier transform closely related to Z-transform is a basic mathematical tool

for signal decomposition and reconstruction. Its applications cover many engineering dis-

ciplines as well.

Various learning and adaptive discrete systems are based upon the use of the least square

method fundamental in many optimization problems. In many cases gradient methods are

applied.
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4

Signal Analysis

Signal analysis is a very useful tool enabling to distinguish spectral components of the

observed sequence of values. In some applications such an information is sufficient but in

other cases it forms the basis for further processing only. The following chapter presents

some methods and algorithms to achieve such an analysis of one or more observed signals

based upon the discrete Fourier transform while parametric methods closely connected

with random signal theory and signal modelling are discussed later.

4.1 Space-Frequency Analysis

4.1.1 Basic Spectral Estimation

Let us assume at first the problem of the infinite data length analysis. Instead of the

discrete Fourier transform discussed before discrete-time Fourier transform applied for

the infinite sequence {xd(n)} can be used based upon relation [15, p.372]

Xd(ω) =
∞∑

n=−∞
xd(n)e−jωn (4.1)

for continuous frequency ω with its period 2π long. The inverse discrete-time Fourier

transform is then defined by relation

xd(n) =
1

2π

∫ 2π

0

Xd(ω)ejωndω (4.2)

The last expression explains how the given signal is represented by the integral of its

harmonic components.

Definition 4.1 The magnitude and phase spectrum of a sequence {xd(n)}∞n=−∞ is defined

as the magnitude and phase of its discrete-time Fourier transform.

Instead of spectrum sometimes power spectral density [22, p.59] is used defined by re-

lation

Sxx(ω) = lim
L→∞

E

⎡
⎣ 1

2L + 1

∣∣∣∣∣
L∑

n=−L

xd(n)e−jωn

∣∣∣∣∣
2
⎤
⎦ (4.3)

with symbol E standing for the mean value of several realizations.

In real cases finite length data segment can be processed only which implies that

• a window function must be used to choose a sequence N samples long

• the discrete Fourier transform can be applied

The main problem of such an approximation is in application of a method which would

provide the best estimate of the true function defined for the infinite process realization.



50 4. Signal Analysis

4.1.2 Window Functions

Various window sequences {w(n)} of the finite length N are used to derive a finite sequence

of the same length from the infinite signal {xd(n)} or impulse response {hd(n)} after their

scalar multiplication. Two main applications of windowing include

• the choise of the data segment

x(n) = xd(n) w(n) (4.4)

to enable the signal analysis

• the evaluation of the finite impulse response filter defined by its impulse response

h(n) = hd(n) w(n) (4.5)

based on the ideal infinite impulse response.

We shall study now the application of windowing for spectral analysis while its use for

filtering will be discussed later.

Using properties of the discrete-time Fourier transform [15, p.379] the scalar multipli-

cation in Eq.( 4.4) in time domain is equivalent to the periodic convolution in frequency

domain given by relation
X(ω) =

1

2π
Xd(ω) ⊗ W (ω) (4.6)

defined by integral

X(ω) =
1

2π

∫ 2π

0

Xd(Ω)W (ω − Ω)dΩ (4.7)

Theorem 4.1 The discrete-time Fourier transform of sequence

xd(n) =
∑

i

cie
jωin (4.8)

is given by the linear combination of unit impulses in the form

Xd(ω) = 2π
∑

i

ciδ(ω − ωi) (4.9)

Proof: Applying Eq.( 4.9) in Eq.( 4.2) we obtain

xd(n) =
1

2π

∫ 2π

0

2π
∑

i

ciδ(ω − ωi)e
jωndω

which can be simplified to relation

xd(n) =
∑

i

ci

∫ 2π

0

δ(ω − ωi)e
jωndω

providing result in form ( 4.8).

Example 4.1 Compare the ideal spectrum of the harmonic sequence xd(n) = cos(ω0n)

and its window approximation.

Solution: As
xd(n) = cos(ω0n) =

1

2
(ejω0n + e−jω0n) (4.10)

it is possible to apply Theorem 4.1 to evaluate

Xd(ω) = π(δ(ω − ω0) + δ(ω + ω0)) (4.11)
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FIGURE 4.1. Theoretical harmonic infinite sequence of frequency ω0 = 1 with its line spectrum
and the comparison with the finite sequence of length N = 32 values and its spectrum based
upon the discrete-time and discrete Fourier transform.

Using further Eq. (4.6) we can estimate the window spectrum in the form

X(ω) =
1

2
(W (ω − ω0) + W (ω + ω0)) (4.12)

Properties of such a function are in this way entirely dependent upon the window function

{w(n)}. Using the rectangular window defined below it is possible to evaluate the spectrum

estimation given in Fig. 4.1.

Definitions of basic window function are summarized in Tab. 4.1 with their sketch and

magnitude spectra in Fig. 4.2 based upon Algorithm 4.1. Ideal line spectra of harmonic

Window definition (MATLAB notation) Mainlobe Sidelobe
width level

Rectangular (BOXCAR)

w(n) =

{
1 for n = 0, 1, · · · , N − 1
0 elsewhere

4π/N −13 dB

Bartlett (Triangular - BARTLETT)

w(n) =

⎧⎨
⎩

2n/N − 1 for n = 0, 1, · · · , (N − 1)/2
2 − 2n/(N − 1) for n = (N − 1)/2, · · · , N − 1
0 elsewhere

8π/N −27 dB

Hanning (HANNING)

w(n) =

{
(1 − cos(2πn/(N − 1)))/2 for n = 0, 1, · · · , N − 1
0 elsewhere

8π/N −32 dB

Hamming (HAMMING)

w(n) =

{
0.54 − 0.46 cos(2πn/(N − 1)) for n = 0, 1, · · · , N − 1
0 elsewhere

8π/N −43 dB

TABLE 4.1. Basic window function definition
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signal components are according to Eq. (4.12) represented by shifted window spectra

(using periodic extension) given in Fig. 4.2. The mainlobe width presents the ability to

distinguish two closely spaced harmonic components. The sidelobe level enables to estimate

how small signal can be detected in presence of large ones.
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FIGURE 4.2. Basic window functions and their magnitude spectra in dB

Discrete-time Fourier transform enables to evaluate the discrete Fourier transform of a

finite length sequence by sampling frequency ω over one period in N points. Spectrum can

be in this way approximated by relation

X(k) = X(ω) |ω=k 2π
N

=
N−1∑
n=0

x(n)e−jk 2π
N

n (4.13)
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Algorithm 4.1 Basic window functions magnitude spectra evaluation.

• matrix of window functions definitions for a given length N and their plot

w = [boxcar(N) bartlett(N) hanning(N) hamming(N)];
plot(w);

• magnitude spectra evaluation of a chosen length M

W =fft(w,M);
f = [0 : (M − 1)]/M ;
semilogy(f ,abs(W));

for k = 0, 1, · · · , N − 1. The power spectral density function defined by ( 4.3) can be

similarly approximated by periodogram defined as

Sxx(k) =
1

N

∣∣∣∣∣
N−1∑
n=0

x(n)e−jk 2π
N

n

∣∣∣∣∣
2

(4.14)

for k = 0, 1, · · · , N−1 taking into account one realization only. Its properties and problems

of its application are discussed in [22, p.68].

It is obvious that the spectrum or periodogram estimation based on Eqs. (4.13) and

(4.14) can be evaluated using the MATLAB function fft mentioned in the previous section.

4.1.3 Short-Time Fourier Transform

In some applications of signal processing with its frequency components changing itself

in time it is useful to combine time-domain and frequency domain analysis. In particular

it is possible to evaluate the Fourier transform for each time in the neighborhood of that

instant [22].

Using the shifted window function w(m) in Eq.( 4.4) by n samples and applying Eq. (4.1)

we can define the discrete short-time Fourier transform (STFT) by relation

X(n, ω) =
∞∑

m=−∞
x(m)w(n − m)e−jωm (4.15)

for n = 0, 1, · · · . allowing to choose a short-time section of {x(m)} at time n. As N samples

long window function implies N samples long time section processing the discrete Fourier

transform can be used resulting according to Eq. (4.13) in relation

X(n, k) =
n∑

m=n−(N−1)

X(m)w(n − m)e−jk 2π
N

m (4.16)

for any time index n and k = 0, 1, · · · , N − 1.

Example 4.2 Let us apply the short-time Fourier transform to a sequence

x(n) = sin((ω0 n)n)

for ω0 =0.07 and n=0, 1, · · · , 100 using N =32 samples long rectangular window function.

Solution: Applying Eq. (4.16) it is possible to evaluate result given in Fig. 4.3 presenting

time dependent signal frequency.
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FIGURE 4.3. The short time Fourier transform of sequence x(n) = sin((ω0 n)n) for ω0 = 0.01
using rectangular window function w(n) of length N = 32 samples and n = 32, 36, 38, · · · , 100.

4.1.4 Cepstral Analysis

Many signal processing methods are based upon presumption that the given system is

linear. Such a system is relatively easy to analyse and it is possible to design a variety of

useful signal processing functions.

Let us consider now a special class of nonlinear systems with their system transformation

H that obey a generalized principle of superposition discussed in more general way in [30]

and given by the following relation

H[x1(n) (op1) x2(n)] = H[x1(n)] (op1) H[x2(n)] (4.17)

H[c (op2) x1(n)] = c (op2) H[x1(n)] (4.18)

where (op1) and (op2) stand for any operators satisfying the algebraic postulates of vector

addition and scalar multiplication. Such homomorphic systems include linear systems as

well.

In practical cases it is possible to restrict our interest to systems combining their signals

either by multiplication or convolution. Especially the last possibility is studied very often

as it can be used for a general problem of echo detection to improve the quality of accoustic

signals or analyze behaviour of seismic signals etc.

The main principle of the homomorphic system processing include

• application of the direct characteristic system transforming operator (op1) to addi-

tion for signal {x(n)} to evaluate {c(n)}
• processing of signal {c(n)} by any linear method

• application of the inverse characteristic system transforming operator of addition

back to (op1).

This principle is presented in Fig. 4.4 for systems combining their signals by convolution.

The direct characteristic system is based upon the discrete Fourier transform changing

convolution to multiplication, following application of the logarithmic function combining
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DFT exp IDFT

FIGURE 4.4. Representation of a homomorphic system with a complex cepstrum as an output
of the direct characteristic system.

signals by addition and inverse Fourier transform returning further processing to the time

domain. Resulting signal is called complex cepstrum allowing to detect signal echos and

their cancelling by a linear system. Inverse characteristic system is similar to the direct

one with complex exponential instead of logarithm only.

Computer processing of signal {x(n)} to obtain its cepstrum is presented in Algo-

rithm 4.2. The whole evaluation can be achieved by the MATLAB function cceps as well.

Example 4.3 Let us analyse cepstrum of signal

x(n) = r(n) ⊗ s(n) =
N−1∑
m=0

r(m)s(n − m)

representing given signal and its echo in the form

x(n) = r(n) + αr(n − n1)

where
r(n) = e−0.1n sin(

π

4
n)

s(n) = δ(n) + αδ(n − n1)

with δ(n) standing for an impulse function, n1 = 40 and α = 0.5.

Solution: The direct characteristic system involves

• the discrete Fourier transform application

X(k) = R(k)S(k)

where

R(k) =
N−1∑
n=0

r(n)e−jk 2π
N

n

S(k) =
N−1∑
n=0

s(n)e−jk 2π
N

n = 1 + αe−jk 2π
N

n1

• the logarithmic function application

L(k) = log(X(k)) = log |X(k)| + j arg(X(k)) =

= log |R(k)| + log |S(k)| + j(arg(R(k) + arg(S(k)))

The contribution to the complex logarithm due to the impulse train for |α| < 1 is

Ls(k) = log
(
1 + αe−jk 2π

N
n1

)
=

∞∑
i=1

(−1)i+1 1

i

(
αe−jk 2π

N
n1

)i
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Algorithm 4.2 Cepstral analysis of a given signal {x(n)}, n = 0, 1, · · · , N − 1 as-
suming original signals in convolution.

• discrete Fourier transform application

X =fft(x);

• complex logarithm implementation

L =log(X);

• inverse Fourier transform application

c =ifft(L);

• the inverse discrete Fourier transform use which for the signal component s(n) pro-

vides the contribution to the complex cepstrum in the form

cs(n) =
1

N

N−1∑
k=0

∞∑
i=1

(−1)i+1 1

i
αie−jk(n1i−n) 2π

N =
∞∑
i=1

(−1)i+1 αi

i
δ(n − n1i)

As this sequence is additive to the sequence given by the original signal it is obvious

that cepstrum can be used for the echo analysis. Results are presented in Fig. 4.5.

Cepstrum component due to the echo can be usually eliminated by a simple window

function in the form
w(n) =

{
0 for n < ni

1 for n > nc
(4.19)

where nc stands for the index resulting from the cepstral analysis. Inverse characteristic

system can be then used. Results of such a procedure applied to the example given above

are presented in Fig. 4.5 as well.
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echo delayed by n1 = 40 samples attenuated by coefficient α = 0.5 for N = 64 before and after
the homomorphic processing using the window function for its cutoff index nc = 30 and the
original sequence magnitude spectrum and complex cepstrum
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4.1.5 Two-Dimensional Signal Analysis

While one-dimensional signal analysis and processing can be applied in many engineer-

ing and scientific systems producing sequences of values its two-dimensional extension is

mainly used in video processing. The mathematical background of such an analysis is

based upon discrete space signals {x(n1, n2)} defined for all integer values of n1 and n2.

The most important deterministic signals represent

• unit sample sequence: δ(n1, n2) =

{
1 for n1 = n2 = 0
0 otherwise

• unit step sequence: u(n1, n2) =

{
1 for n1, n2 ≥ 0
0 otherwise

• real exponential sequence: x(n1, n2) = Aαn1βn2

• rectangular sequence: x(n1, n2) =

{
1 for a ≤ n1 ≤ b, c ≤ n2 ≤ d
0 otherwise

Sketch of signals is given in Fig. 4.6.

It is possible to show [22] that any stable sequence {x(n1, n2)} can be defined by com-

bination of complex exponentials with coefficients X(ω1, ω2) according to the following

definition.

Definition 4.2 The direct discrete space Fourier transform is given by relation

X(ω1, ω2) =
∞∑

n1=−∞

∞∑
n2=−∞

x(n1, n2)e
−jω1n1e−jω2n2 (4.20)

while the inverse discrete space Fourier transform is defined as

x(n1, n2) =
1

(2π)2

∫ π

−π

∫ π

−π

X(ω1, ω2)e
jω1n1ejω2n2dω1dω2 (4.21)

Result of the direct discrete space Fourier transform is in general a complex function of

continuous variables ω1 and ω2 having period 2π which implies that

X(ω1, ω2) = X(ω1 + 2π, ω2) = X(ω1, ω2 + 2π) (4.22)
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FIGURE 4.6. Basic deterministic two-dimensional signals.
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and it represents the signal spectrum. In case that {x(n1, n2)} stands for the two-dimensional

linear system impulse response its discrete space Fourier transform represents the fre-

quency response of the system.

In many cases the given sequence {x(n1, n2)} has a finite length with its indices in the

range 0 ≤ n1 ≤ N1 − 1 and 0 ≤ n2 ≤ N2 − 1. The discrete Fourier transform X(k1, k2) of

such a sequence is related to the discrete space Fourier transform by relation

X(k1, k2) = X(ω1, ω2) |ω1=k1
2π
N1

, ω2=k2
2π
N2

(4.23)

for 0 ≤ k1 ≤ N1 − 1, 0 ≤ k2 ≤ N2 − 1 and it can be evaluated by the following definition.

Definition 4.3 The direct discrete Fourier transform is given by relation

X(k1, k2) =

N1−1∑
n1=0

N2−1∑
n2=0

x(n1, n2)e
−jk1

2π
N1 e

−jk2
2π
N2 (4.24)

for 0 ≤ k1 ≤ N1−1, 0 ≤ k2 ≤ N2−1 and the inverse discrete Fourier transform is defined

as

x(n1, n2) =
1

N1N2

N1−1∑
k1=0

N2−1∑
k2=0

X(k1, k2)e
jk1

2π
N1 e

jk2
2π
N2 (4.25)

This definition implies that the sequence {x(n1, n2)} of length N1 N2 in space domain is

represented by sequence {X(k1, k2)} of the same size in frequency domain.

Example 4.4 Evaluate the discrete-space Fourier transform of the rectangular sequence

x(n1, n2) =

{
1 for −1 ≤ n1 ≤ 1,−1 ≤ n2 ≤ 1
0 otherwise

(4.26)

given in Fig 4.6.

Solution: Using the Definition 4.2 it is possible to find

X(ω1, ω2) = 1 + ejω1e−jω2 + e−jω2 + e−jω1e−jω2 + ejω2 + e−jω1 + ejω1ejω2 + ejω2 + e−jω1ejω2 =

= 1 + 2(cos(ω1 − ω2) + cos(ω1) + cos(ω2) + cos(ω1 + ω2))

Sketch of this (real) function is presented in Fig. 4.7.
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FIGURE 4.7. The discrete space Fourier transform of the rectangular sequence

The application of the two-dimensional Fourier representation of a signal can be used

both for signal analysis and its processing using similar principles applied for the one-

dimensional case. Further discussion is given in [22].



4. Signal Analysis 59

4.2 Summary

Signal analysis is a very powerful tool to provide spectral estimation of signal components.

This chapter presented basic ideas only connected with the discrete Fourier transform and

applications of window functions. Further information will be provided in next sections.
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5

Digital Filters

Any digital systems enabling transformation of a given sequence and using an algorithmic

mathematical approach to such a procedure are often called digital filters. Applications

of these structures cover many areas including system identification and modelling, signal

detection, interference cancelling and system control as well. The following section is

devoted to basic nonadaptive filters while adaptive systems will be discussed further.

5.1 Basic Principles and Methods

A very extensive theory of analog filters has been developed before digital systems started

to be so widely used. It is one of reasons why for many applications prototype analog filters

are designed at first and then transformed to their digital form [5, 23] enabling their more

precise and simple implementation. As such an approach has been described in many

references till now we shall concentrate our attention to the direct digital system design

in most cases.

5.1.1 Digital System Description

A general linear shift invariant discrete system can be described by the difference equation

y(n) +
N∑

k=1

a(k)y(n − k) =
N∑

k=0

b(k)x(n − k) (5.1)

or according to the mathematical analysis given above by its discrete transfer function

H(z) =
Y (z)

X(z)
=

N∑
k=0

b(k)z−k

1 +
N∑

k=1

a(k)z−k

(5.2)

or frequency response

H(ejωk) = H(z) |z=ejωk (5.3)

While the difference equation is essential for transformation of signal {x(n)} to {y(n)}
the frequency response function enables the analysis and design of the discrete system

behaviour describing which frequency components of a given signal will be rejected. Basic

ideal frequency responses of various filters are summarised in Fig. 5.1 for digital frequency

ω ∈ 〈0, π). Filter design for approximation of such ideal characteristics presented in

Fig. 5.1 involves

• the estimation of the form of difference equation (5.1) resulting in finite impulse

response (FIR) filter for zero coefficients {a(1), a(2), · · · , a(N)} or infinite impulse

response (IIR) filter

• the evaluation of the difference equation coefficients

These steps are closely connected with demands covering the accuracy of the frequency

response approximation, system stability and its behaviour.
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FIGURE 5.1. Amplitude frequency characteristics of basic types of filters including (a) ideal
and real low-pass filter, (b) high-pass, (c) band-pass, and (d) band-stop filters

Example 5.1 Use the discrete system described by equation

y(n) − y(n − 1) + 0.5 y(n − 2) = 0.2 x(n − 1) + 0.2 x(n − 2)

to evaluate its response to the input sequence

x(n) = sin(0.1 n) + sin(2.5 n)

Solution: According to results of Example 3.5 the transfer function of a given system in

the form
H(z) = 0.2

z + 1

z2 − z + 0.5
implies the amplitude frequency response |H(ejω)| presented in Fig. 5.2 approximating

the low-pass filter. As the spectrum of the given sequence has only one its component in

the system pass-band the difference equation rejects the high frequency signal component

with results given in Fig. 5.2.

5.1.2 Elementary Digital Filters

In various applications very simple digital filters can be used even though their frequency

response is not quite well in comparison with the ideal one.

The moving average system can be described by the difference equation

y(n) =
1

N

N−1∑
k=0

x(n − k) (5.4)

taking into account N values of a given sequence. As

y(n) =
1

N
(x(n) + x(n−1) + x(n−2) + · · · + x(n−N +2) + x(n−N+1))

y(n−1) =
1

N
(x(n−1) + x(n−2) + x(n−3) + · · · + x(n−N+1) + x(n−N))
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FIGURE 5.2. Amplitude frequency response of the discrete system with the transfer func-
tion H(z) = 0.2(z + 1)/(z2 − z + 0.5) and results of its application for processing of sequence
x(n) = sin(0.1 n) + sin(2.5 n)

which implies that
y(n) − y(n−1) =

1

N
(x(n) − x(n−N))

the discrete transfer function is in the form

H(z) =
1

N

zN − 1

zN − zN−1
(5.5)

and the frequency response can be expressed after a few mathematical operations (pre-

sented in Example 2.3 in the form

H(ejω) =
1

N
e−jω(N−1)/2 sin ωN/2

sin ω/2
(5.6)

with ∣∣H(ejω)
∣∣ =

1

N

∣∣∣∣sin ωN/2

sin ω/2

∣∣∣∣ (5.7)

Graphic interpretation of this result is presented in Fig. 5.3 for N = 10 showing that

the moving average approximates the low-pass filter with N allowing to change its cutoff

frequency.

The exponential decay system can be described in a similar way by the difference

equation

y(n) =
1∑N−1

k=0 v(k)

N−1∑
k=0

v(k)x(n − k) (5.8)

for v(k) = v(1)k and v(1) ∈ (0, 1〉 which for v(1) = 1 stands for the moving average in

fact. As
y(n) − v(1) y(n − 1) =

1∑N−1
k=0 v(k)

(x(n) − v(N) x(n − N))

the discrete transfer function can be expressed in the form

H(z) =
1∑N−1

k=0 vk

zN − v(N)

zN − v(1)zN−1
(5.9)
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FIGURE 5.3. Magnitude and phase frequency response of the moving average system with the
transfer function H(z)=(zN−1)/(N (zN −zN−1)) for N =10 and its sketch in the complex plane

System amplitude frequency response for v(N) << 1 in form∣∣H(ejω)
∣∣ ≈ 1 − v(1)√

1 + v(1)2 − 2v(1) cos ω
(5.10)

presented in Fig. 5.4 represents the approximation of the low-pass filter again allowing to

use coefficient v(1) to change its cutoff frequency.
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digital system for signal differentiation.
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The signal differentiation described by the difference equation

y(n) = x(n) − x(n − 1) (5.11)

and the discrete transfer function

H(z) = 1 − z−1 (5.12)

has its frequency response in the form

H(ejω) = 1 − e−jω (5.13)

Its magnitude
|H(ejω)| =

√
(1 − cos ω)2 − sin2 ω = 2 sin(ω/2) (5.14)

presented in Fig. 5.4 represents a very simple approximation of the high-pass filter with

no possiblity of its cutoff frequency change.

5.2 Finite Impulse Response Filter

We shall study now the digital system described by the difference equation

y(n) =
P−1∑
k=0

h(k) x(n − k) (5.15)

derived from Eq. (5.1) which represents the general moving average system in fact. The

purpose of the following analysis will be in the estimation of P and evaluation of values

{h(0), h(1), · · · , h(P − 1)} standing for the impulse response approximating the ideal

frequency characteristics.

5.2.1 Linear Phase Systems

Definition 5.1 A system with its finite impulse response {h(0), h(1), · · · , h(P − 1)} is

called a linear phase system if its frequency characteristics can be expressed in the form

H(ejωk) =
P−1∑
n=0

h(n)e−jnωk =
∣∣H(ejωk)

∣∣ e−jαωk (5.16)

for ωk = k 2π
P

, k = 0, 1, · · · , P − 1.

Systems of this type [23] have an essential role in signal processing applications as

they cause the same delay for all signal frequency components in their passband and

preserve the shape of a given signal. In case that DFT [x(n)] stands for the discrete Fourier

transform of the input sequence the discrete Fourier transform of the system output can

be evaluated in the form

DFT [y(n)] =
∣∣H(ejω)

∣∣ e−jαωDFT [x(n)] =
∣∣H(ejω)

∣∣ DFT [x(n − α)] (5.17)

It is obvious that if all frequency components of the input signal are in the passband of

the system then y(n) = x(n − α) and the signal is delayed only.

Theorem 5.1 A finite impulse response system of length P is a linear phase system in

case that
h(n) = h(P − 1 − n) (5.18)

for n = 0, 1, · · · , P − 1.
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Proof: In case of even P it is possible to use the definition of the discrete Fourier transform

to find

H(ejωk =
P−1∑
n=0

h(n)e−jωkn =

P/2−1∑
n=0

h(n)e−jωkn +
P−1∑

n=P/2

h(n)e−jωkn

Using further Eq. (5.18) we can evaluate

H(ejωk) =

P/2−1∑
n=0

h(n)e−jωkn +

P/2−1∑
n=0

h(n)e−jωk(−n+P−1) =

= e−jωk(P−1)/2

P/2−1∑
n=0

h(n)(e−jωk(n−(P−1)/2) + e−jωk(−n+(P−1)/2)) =

= e−jωk(P−1)/2

P/2−1∑
n=0

2h(n) cos(ωk(n − P − 1

2
))

Comparison of the last expression with Eq. (5.16) provides value of

α = (P − 1)/2 (5.19)

Similar results can be obtained for odd P.

5.2.2 Ideal Frequency Response Approximation

Let us assume an ideal low-pass filter according to Fig. 5.1(a) with its linear phase fre-

quency response in the form

H(ejω) =

{
e−jαω for 0 < ω < ωc and 2π−ωc < ω < 2π
0 for ωc ≤ ω ≤ 2π−ωc

(5.20)

with discrete values of ωk = k 2π/P approaching continuous variable ω for P → ∞. For

this conditions discrete Fourier transform is usually called Fourier transform only and we

can apply it for the approximation of the periodic extension of function (5.20) in the form

H(ejω) =
∞∑

n=−∞
h(n)e−jnω (5.21)

where
h(n) =

1

2π

∫ 2π

0

H(ejω)ejnωdω (5.22)

It is further possible to evaluate

h(n) =
1

2π

∫ ωc

0

e−j(n−α)ωdω +
1

2π

∫ ωc

2π−ωc

ej(n−α)ωdω =

=
1

2π

[
ej(n−α)ω

j(n − α)

]ωc

0

+
1

2π

[
ej(n−α)ω

j(n − α)

]2π

2π−ωc

=

=
1

2πj(n − α)
(ej(n−α)ω − 1 + 1 − e−j(n−α)ω) =

sin((n − α)ω)

π(n − α)

Using a finite sequence {h(n)} only limited to P values it is possible to use Eq. (5.19) to

define the linear phase impulse response in the form

h(n) =
sin((n − (P − 1)/2)ωc)

π(n − (P − 1)/2)
(5.23)
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FIGURE 5.5. Finite impulse response {h(n)} for P odd (P = 11) and even (P = 12)

for n = 0, 1, · · · , P − 1. The sketch of such an impulse response for odd and even P is

presented in Fig. 5.5. The magnitude and phase frequency characteristics for a chosen

length P and cutoff frequency is given in Fig. 5.6 confirming the assumption of the linear

phase.

The process of the impulse response restriction to P values only can be looked upon

as the scalar multiplication of the infinite impulse response by the rectangular window

presented in the previous chapter and causing the transition band of length 4π/P [23,

p.201]. The choice of P large enough can restrict the transition band under a given limit.

Comparison of finite impulse response filters for various length P is given in Fig. 5.7

presenting their amplitude frequency responses in dB defined as

H(ejωk) |dB= 20 log(|H(ejωk)|/|H(ejω0)|) (5.24)

with ω0 = 0 for the low-pass filter.

The design procedure of the finite impulse response filter is summarized in Algorithm 5.1

(with the choice of OMS = 0 for the low-pass system).
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FIGURE 5.6. Magnitude and phase frequency characteristics of the finite impulse response filter
of length P = 64 for cutoff frequency ωc = 0.8 [rad] and its sketch in the complex plane
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FIGURE 5.7. Low-pass amplitude frequency response of the FIR filter limited by the rectangular
window of various length and cutoff frequency ωc = 0.8 [rad]

5.2.3 Basic Impulse Response Modifications

Finite impulse response filter of the low-pass type with its cutoff frequency ωc derived

above can be very simply modified to form a band-pass filter with its pass-band 2ωc long

and the central frequency ωs. Original impulse response h(0), h(1), · · · , h(P − 1) implies

the magnitude frequency response

∣∣H(ejωk)
∣∣ =

∣∣∣∣∣
P−1∑
n=0

h(n)e−jωkn

∣∣∣∣∣ (5.25)

The shift by ωs in frequency domain presented in Fig. 5.8 implies the band-pass magnitude

frequency response in the form

∣∣H(ej(ωk−ωs))
∣∣ =

∣∣∣∣∣
P−1∑
n=0

h(n)e−j(ωk−ωs)n

∣∣∣∣∣ =

∣∣∣∣∣
P−1∑
n=0

h̃(n)e−jωkn

∣∣∣∣∣ (5.26)

Algorithm 5.1 Design of the low-pass and band-pass linear phase FIR filter.

• choice of the filter length P , the cutoff frequency OMC of the original low-pass
filter and central frequency OMS of the band-pass filter (enabling the low-pass
filter design for OMS = 0).

• evaluation of the original impulse response values
p = 0 : P − 1;
h = sin((p − (P − 1)/2) ∗ OMC)./(π ∗ (p − (P − 1)/2));

• definition of the complex impulse response values of the band-pass filter
h = h. ∗ exp(j ∗ OMS ∗ p);

• evaluation and plot of a given number of values M of the filter frequency response
[hh,w] = freqz (h, [1, zeros(1, P − 1)],M);
clg; subplot(211);
plot(w, abs(hh)); plot(w, angle(hh));
pause

• evaluation of the system output for a given sequence x = [x(1), x(2), · · · , x(N)]
for n = P : N

y(n) = h ∗ x(n : −1 : n − P + 1)′

end
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FIGURE 5.8. Magnitude frequency response of the low-pass and band-pass FIR filter

where
h̃(n) = h(n)ejωsn (5.27)

represents the complex impulse response of the band-pass filter. The design procedure is

summarised in Algorithm 5.1.

It is obvious that owing to symmetry properties of the discrete Fourier transform it is

usually necessary to preserve this symmetry when designing digital filters.

Example 5.2 Use the band-pass FIR filter of length P = 51 to extract the signal in the

frequency band 〈1, 2〉 [rad] from the original sequence

x(n) = sin(0.2n) + sin(1.6n)
for n = 0, 1, · · · , N − 1.

Solution: Impulse response of the original low-pass filter for ωc = 0.5 [rad] is given by

Eq. (5.23) which must be then modified by ωs = 1.5 according to Eq. (5.27) to define the

complex impulse response
h̃(n) =

sin((n − (P − 1)/2)ωc)

π(n − (P − 1)/2
ejωsn

for n = 0, 1, · · · , P − 1 standing for the band-pass filter in frequency band 〈1, 2〉 [rad]

presented in Fig. 5.9. Owing to symmetry properties it is further necessary to define the

complex impulse response

h̃∗(n) =
sin((n − (P − 1)/2)ωc)

π(n − (P − 1)/2
e−jωsn

of the complex conjugate filter. The given sequence processing can be based upon Eq. (5.15)

in the form
y(n) =

P−1∑
k=0

(h̃(k)x(n − k) + h̃∗(k)x(n − k))

for n = P, P + 1, · · · , N − 1.

Further impulse response modifications involve the application of other window de-

scribed till now [23]. Their use mentioned in the previous section enable more efficient

choice of the stop band attenuation and the transition width as well.
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FIGURE 5.9. Band-pass processing of sequence x(n) = sin(0.2n) + sin(1.6n)

5.3 Multirate Digital Filters

The sampling rate in various parts of the digital system can be different which may

be useful to reduce the number of computations and to decrease the number of values

used for system analysis and information transition [2, p.234]. This principle is often

applied for design of filter banks based on the DFT and assumes that the given sequence

with sampling frequency fs is used to form Ns sequences covering Ns separate frequency

bands with their sampling rate reduced to fs/Ns allowing their separate processing. This

principle closely connected with the application of FIR filters is discussed further.

5.3.1 Band Limited Signal Sampling Rate Reduction

Let us restrict consideration of the previous section to the impulse response in the form

h(n) =
sin(n − (P − 1)/2)ωc

π(n − (P − 1)/2)

standing for the low-pass FIR filter with its cutoff frequency ωc being a base for the

band-pass filter having central frequency ωs with its complex impulse response defined by

h̃(n) = h(n)ejωsn =
sin(n − (P − 1)/2)ωc

π(n − (P − 1)/2)
ejωsn (5.28)

for n = 0, 1, · · · , P − 1. Let us choose ωc = π/(2K) with K standing for number of

separate frequency sub-bands of the normalized frequency range 〈0, π〉. Defining further

ωs = π/(2K) + iπ/K with principal channels defined for 0 ≤ i ≤ K − 1 we can use the

complex impulse response (5.28) in the form

h̃i(n) =
sin(n − (P − 1)/2)π/(2K)

π(n − (P − 1)/2)
ej(π/(2K)+iπ/K)n = h(n)ej(π/(2K)+iπ/K)n (5.29)

to realize the band-pass filter covering any frequency sub-band of the range 〈0, π〉 and

standing for one channel of a filter bank discussed further.
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Example 5.3 Evaluate the amplitude frequency response of a FIR band-pass filter of

length P = 64, with K = 4 channels modified by the Hamming window and covering

channels with indices 0 and 3

Solution: Using the window function

W (n) = α − (1 − α) cos(2πn/(P − 1))

for n = 0, 1, · · · , P − 1 and α = 0.54 defined before to modify the complex impulse

response given by Eq. (5.29) it is possible to apply the FFT to obtain results presented in

Fig. 5.10. It is obvious that the passband having bandwidth BW = π/K [rad/s] (equal

to 1/(2K) [Hz]) is represented by M = P/(2K) samples.

Assume a band limited real sequence {y(n)} for n = 0, 1, · · · , N − 1 with its number of

samples N as the integer multiple of P and its spectrum being inside one of the previously

defined principal channel i for i ∈ 〈0, K−1〉 and its complex conjugate. Its spectrum is

defined by means of the discrete Fourier transform for N = P in the form

Y (k) =
P−1∑
n=0

y(n)e−jkn2π/P (5.30)

for k = 0, 1, · · · , P − 1. Using the inverse discrete Fourier transform it is possible to

evaluate

y(n) =
1

P

P−1∑
k=0

Y (k)ejkn2π/P (5.31)

Example 5.4 Evaluate the amplitude spectrum of sequence

y(n) = sin(2π0.16n)

for n = 0, 1, · · · , P − 1 and P = 64 and find band-pass filters dividing frequency range

〈0, π〉 to K = 4 sub-bands and including this spectrum.
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FIGURE 5.10. Basic impulse response of FIR low-pass filter of length P = 64 and bandwidth
BW = 1/(2K) for K = 4 channels modified by the Hamming window (α = 0.54) with its
frequency response and related band-pass filters spectra covering channels i = 0 and 3.
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FIGURE 5.11. The given sequence y(n) = sin(2π0.16n), n = 0, 1, · · · , N − 1 for N = 64 and its
spectrum with frequency responses of two band-pass filters of length P = 64 for K = 4, i = 1
and 6.

Solution: Spectrum of the given sequence has its frequency component f = 0.16 included

in channel i = 1 covering the frequency band 〈0.125, 0.25〉 and its complex conjugate with

its index i = 6 according to Fig. 5.11.

The sampling rate reduction by the value K can be realized using each K-th

value of the original sequence only and it is possible to show that this reduced sequence

contains enough information enabling to reconstruct the whole original sequence again.

Theorem 5.2 Assume that a given sequence {y(n)}, n = 0, 1, · · · , P −1 has its spectrum

estimate Y (k), k = 0, 1, · · · , P − 1 for normalized sampling frequency fs = 1 in the range

〈0, 1). Then spectrum of the reduced sequence

{r(n) : r(n) = y(nK)} (5.32)

for n = 0, 1, · · · , 2M − 1 where 2M = P/K stands for an even integer is related to the

original one by equation

R(m) =
1

K

K−1∑
q=0

Y (m + q 2M) (5.33)

for m = 0, 1, · · · , 2M − 1 covering the frequency range 〈0, 1/K).

Proof: The Fourier transform of sequence {r(n)} defined by (5.32) can be expressed in

the form

R(m) =
2M−1∑
n=0

y(nK)e−jmn2π/(2M) (5.34)

for m = 0, 1, · · · , 2M − 1. After substitution for y(nK) from Eq. (5.31) we obtain

R(m) =
2M−1∑
n=0

1

P

P−1∑
k=0

Y (k)ejknK2π/P e−jmn2π/(2M)

and taking into account that P = 2MK it is possible to write

R(m) =
1

P

P−1∑
k=0

Y (k)
2M−1∑
n=0

ejn(k−m)π/M

As the second sum is nonzero for (k−m) = q 2M only where q is any integer and its value

is equal to 2M = P/K it is possible to simplify the previous equation to the form given

by Eq. (5.33). As stated before the frequency range for the original normalized sampling

frequency fs = 1 is equal to 〈0, fs〉. The subsampling reduces the sampling frequency to

fr = fs/K for sequence {r(n)} and therefore its spectrum covers the frequency range

〈0, fr〉.
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Result of this Theorem implies that the Fourier transform (5.30) of the original sequence

having P = 2MK values is reduced by subsampling defined by Eq. (5.32) to 2M values

only which can be evaluated as the average of K original values according to Eq. (5.33).

Example 5.5 Evaluate the spectrum of sequence {r(n)} related to sequence

y(n) = sin(2π0.16n)

studied in Example 5.4 by the reduction coefficient K = 4.

Solution: Results obtained from the definition of the DFT and relation (5.33) are presented

in Fig. 5.12. The original sequence of length P = 64 is reduced to P/K = 2M = 16 values

only. In the same way P = 64 spectrum values covering normalized frequency band 〈0, 1〉
are reduced to 2M = 16 values only defining frequency range 〈0, 1/K〉. But owing to the

band limited given sequence it is still possible to distinguish parts due to channel i = 1

and its complex conjugate even for the reduced sequence spectrum. This property is quite

essential for further signal reconstruction.
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FIGURE 5.12. The reduced sequence formed by each K-th value of the original signal (for K = 4)
and the diluted sequence with their spectra

Signal reconstruction based on the reduced sequence defined above can be used

to verify that such a sequence can transmit enough information about the original band

limited signal.

Theorem 5.3 Let us dilute the reduced sequence {r(n):r(n)=y(nK)} for n=0, · · ·, 2M−1

where 2M = P/K stands for an even integer by (K − 1) zeros inserted among its each

adjacent values to form sequence

z(n) =

{
y(n) for n = 0, K, 2K, · · · , (2M − 1)K
0 for other values of n

(5.35)

and let us assume that the spectrum of the original signal {y(n)} is completely contained

in channel i of the band-pass filter defined by its impulse response h̃i(n) given by Eq. (5.29)
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and its complex conjugate (related to h̃∗
i (n)). Then the original signal can be reconstructed

by sequence

s(n) =
P−1∑
p=0

z(n−p) (h̃i(n) + h̃∗
i (n)) (5.36)

for n = 0, 1, · · · , P − 1.

Proof: The discrete Fourier transform of sequence given by Eq. (5.35) can be evaluated in

the form

Z(k) =

(2M−1)K∑
n=0,K,2K,···

y(n)e−jkn2π/P =
2M−1∑
q=0

y(qK)e−jkqK2π/P

for k = 0, 1, · · · , P − 1. Taking into account that P = 2MK we get sequence

Z(k) =
2M−1∑
q=0

y(qK)e−jkq2π/(2M) (5.37)

representing the periodic sequence with its period 2M samples long and owing to Eq. (5.34)

standing for the periodic extension of the DFT of the reduced sequence {r(n)}. This fact

implies that the original spectrum of sequence {y(n)} can be evaluated by the scalar

multiplication of spectrum Z(k) by the frequency response of channel i and its complex

conjugate. According to properties of DFT this multiplication corresponds to the convo-

lution in time domain given by Eq. (5.36).

Example 5.6 Evaluate the spectrum of sequence {z(n)} related to sequence

y(n) = sin(2π0.16n)

by Eq. (5.35) and use the convolution with the impulse response h̃i(n) and its complex

conjugate for channel i = 1 to estimate the original sequence.

Solution: Results obtained from the definition of the DFT or relation (5.37) are presented

in Fig. 5.12. It is possible to see that for P = 64 samples of sequence {z(n)} its spectrum

covering the frequency range 〈0, 1〉 [Hz] by P = 64 values is periodic with its period

P/K = 2M = 16 samples long which is equal to frequency band 1/K. Using Eq. (5.36)

it is possible to reconstruct the original sequence in the form presented in Fig. 5.13.
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FIGURE 5.13. The output sequence {s(n)} defined by convolution of the diluted sequence and
two complex conjugate impulse responses defining frequency bands of the original signal and the
output sequence spectrum

It is possible to summarize results of the previous mathematical description in the

following way
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• The real signal sampled with the frequency fs (according to sampling theorem) being

band limited to the couple of complex conjugate frequency bands each fs/(2K) long

may be subsampled in such way that each K-th sample is used for further processing

only

• The narrover the frequency band is the more substantial subsampling may be applied

allowing lower number of computations involved.

Results given above are very important for design of multirate adaptive filters [2] and

filter banks mention further.

5.3.2 Filter Bank Design

A filter bank [22] is very important signal processing tool usually based on band-pass FIR

filters and often using the multirate principle as well.

Let us assume that we would like to design a filter bank covering frequency range 〈0, π〉
by K band-pass filters. Each of these channels can be defined by its complex finite impulse

response given by Eq. (5.29) enabling to find its output for a given sequence {x(n)} in

the form

yi(n) =
P−1∑
p=0

h̃i(p)x(n − p) (5.38)

Output signal can then be evaluated by equation

y(n) =
2K−1∑
i=0

viyi(n) (5.39)

where coefficients vi enable to define gain of separate channels and in case of their equal

value vi = 1 for i = 1, 2, · · · , 2K − 1. This structure can be used in case of the adaptive

signal processing as well with individual gains changed during the learning process of the

system.

Example 5.7 Evaluate the frequency response of a filter bank of length P = 64 for K = 4

channels.

Solution: Using an impulse as the input sequence {x(n)} in Eq. (5.38) it is possible to

evaluate the output sequence {y(n)} by Eq. (5.39) for vi = 1, i = 1, 2, · · · , 2K − 1 and its

spectrum. Fig. 5.14 presents resulting frequency response for application of rectangular

and Hamming window as well.

Problems connected with the realization of the computational algorithm involve

• design of such a filter bank enabling perfect reconstruction of the original signal

• application of the FFT in process of signal decomposition and reconstruction given

by Eq. (5.38) and (5.39) to realize faster processing

• proper subsampling in a multirate filter bank enabling to reduce the number of

computations

Possibilities of subsampling and reduction of computations are very important especially

for the real time applications as the time consumption for long sequences processing may

be substantially decreased.
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FIGURE 5.14. Normalized frequency response of K = 4 channel FIR filter bank of length P = 64
samples with the use of rectangular and Hamming window function and its sketch in the complex
plane.

Example 5.8 Find the fast algorithm evaluating the outputs of all 2K filter bank channels

using the FIR band-pass filters of length P .

Solution: Assuming that P = 2MK and denoting p = q + r2K we can write Eq. (5.38) in

the form

yi(n) =
2K−1∑
q=0

M−1∑
r=0

h̃i(q + r2K)x(n − q − r2K)

Using Eq. (5.29) and owing to periodicity

h̃i(q + r2K) = h(q + r2K)ej(π/(2K)+iπ/K)(q+r2K) =

= h(q + r2K)ejπ(q+r2K)/(2K)ejiq2π/(2K)

and therefore

yi(n) =
2K−1∑
q=0

ejiq2π/(2K)

M−1∑
r=0

h(q + r2K)x(n − q − r2K)ejπ(q+r2K)/(2K) =

=
2K−1∑
q=0

g(n, q)ejiq2π/(2K) (5.40)

The last expression implies that it is possible for each n to evaluate g(n, q) at first and

then use the inverse DFT for evaluation of yi(n) for all indices i at once. In case that 2K

is a power of 2 the inverse FFT can be applied.

A simple method of the filter bank application based on Eq. (5.40) and (5.39) is pre-

sented in Algorithm 5.2. Further improvement of this algorithm may be achieved by the

use of multirate processing.
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Algorithm 5.2 Processing of a sequence {x(n)}2P
n=1 by a filter bank composed of K

FIR filters of length P .

• definition of the filter length P , number of channels K and masking vector v =
[v(1), v(2), · · · , v(2K)]

• definition of vector x = [x(1), x(2), · · · , x(2P )]

• definition of the basic impulse response

h = sin((0 : P−1) − (P−1)/2 ∗ π/(2 ∗ K))/(π((0 : P−1) − (P−1)/2))

• for n = P, P +1, · · · , 2P

– evaluation of
g(q) = x((n − q) : −2K : (n − q − (M − 1) ∗ 2K))∗

(h(q : 2K : (q + (M − 1) ∗ 2K)).∗
exp(jπ(q + (1 : M − 1) ∗ 2K)/(2 ∗ K)))′;

for q = 0, 1, · · · , 2K − 1 and M = P/(2K) used in Eq. (5.40)

– evaluation of outputs f = [f(1), · · · , f(2K)] of separate bank channels based
on Eq. (5.40)

f = fft(g);

– evaluation of system output according to (5.39)
y(n) = sum(f . ∗ v);

The multirate processing can be very efficient as it allows not to follow the sampling

theorem on a channel-by-channel basis as it is sufficient to meet it on the sum of channels.

The evaluation of outputs of K separate channels given by Eq. (5.38) or (5.40) can then be

performed for n = 0, K, 2K, · · · only. The diluted sequences {zi(n)} defined by equation

zi(n) =

{
yi(n) for n = 0, K, 2K, · · ·
0 for other values of n

(5.41)

similar to Eq. (5.35) can then be used for signal reconstruction. Modifying Eq. (5.36) for

complex signals restricted to one channel only we can use Eq. (5.39) in the form

y(n) =
2K−1∑
i=0

Bi

P−1∑
p=0

zi(n − p)h̃i(p) (5.42)

After a few modifications [34] the FFT can be used in this stage as well.

It is obvious that in case of a complex band limited signal to a single channel even

stronger subsampling may be applied with such a reduction that only each (2K)-th sample

is used.

Example 5.9 Use the filter bank composed of K = 8 FIR filters of length P = 128 to

extract signal components in its channels 1 and 5 for

x(n) = sin(2πf1n) + sin(2πf2n) + 0.2 sin(2πf3n)

for f1 = 0.1, f2 = 0.15, f3 = 0.35 and n = 0, 1, · · · , 2P − 1.
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FIGURE 5.15. Application of a filter bank of length P = 128 and K = 8 channels to process
the given sequence with active channel 1 and 5

Solution: Using the Algorithm 5.2 it is possible to evaluate the system output in form pre-

sented in Fig. 5.15 together with the signal spectrum and filter bank frequency response.

It is possible to see that the middle frequency component is excluded.

The last example presented the non-adaptive application of a filter bank with gains

of separate channels defined in advance. In many other applications their gain can be

adapted with respect to changing conditions in the observed system.

5.4 Infinite Impulse Response Filters

Digital filter is simply specified by the discrete transfer function H(z) with its behaviour

defined by the frequency response H(ejωi) = H(z) |z=ejωi . We shall study now a general

transfer function given as a rational function implying the sequence {h(n)} standing for

the infinite impulse response in the form

H(z) =
Y (z)

X(z)
=

N∑
k=0

b(k)z−k

1 +
N∑

k=1

a(k)z−k

=
∞∑

k=0

h(k)z−k (5.43)

In comparison with the FIR system not so many coefficients are necessary in this case

enabling to process the given sequence by the difference equation

y(n) = −
N∑

k=1

a(k)y(n − k) +
N∑

k=0

b(k)x(n − k) (5.44)

On the other hand the problem of stability must be followed for IIR systems and the

phase characteristic is not linear as in FIR processes.
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There are various digital filter design procedures enabling to evaluate coefficients of the

transfer function or the difference equation [30, 32, 23] and we shall mention some of them

only.

5.4.1 Least Squares Frequency Characteristics Approximation

Let us suppose a given set of the magnitude frequency response values |Hd(e
jωi)| for

frequencies ωi, i = 0, 1, · · · ,M−1. Using the discrete transfer function given by Eq. (5.43)

we can apply the least square method to evaluate its vector of coefficients

w = [b(0), b(1), · · · , b(N), a(1), a(2), · · · , a(N)] (5.45)

minimizing the sum of squared errors defined as

J(w) =
M−1∑
i=0

(∣∣H(ejωi)
∣∣ − ∣∣Hd(e

jωi)
∣∣)2

(5.46)

under constraints that all poles of the discrete transfer function are inside the unit circle.

Theorem 5.4 Let us assume the discrete transfer function H(z). Then∣∣H(ejωi)
∣∣2 = H(z) H(z−1) |z=ejωi (5.47)

Proof: As H(ejωi) = H(z) |z=ejωi has a complex value for each ωi its magnitude results

from the product of complex conjugate values of H(ejωi) and H(e−jωi).

Using Eqs. (5.43) and (5.47) in Eq. (5.46) we obtain the sum of squared errors in the

form

J(w) =
M−1∑
i=0

(√ ∑N
k=0 b(k)e−jkωi

∑N
k=0 b(k)ejkωi

(1 +
∑N

k=1 a(k)e−jkωi)(1 +
∑N

k=1 a(k)ejkωi)
− ∣∣Hd(e

jωi)
∣∣)2

(5.48)

After the evaluation of the gradient g = ∂J(w)/∂w we can use the steepest descent

method mentioned above to minimize the squared error given by Eq. (5.48). As no control

over stability is applied in this basic method the resulting poles outside the unit circle

must be modified using the following statement.

Theorem 5.5 The amplitude frequency response of system having its discrete transfer

function with the pole component (z−Aejϕ) is the same as that with component A(z−1
A
ejϕ).

Proof: Studying magnitudes of the frequency response only it is possible to evaluate

M1 =
∣∣ejω − Aejϕ

∣∣ =
√

(cos ω − A cos ϕ)2 + (sin ω − A sin ϕ)2 =

=
√

1 + A2 − 2A cos(ω − ϕ)

Similarly

M2 =

∣∣∣∣ejω − 1

A
ejϕ

∣∣∣∣ =

√
(cos ω − 1

A
cos ϕ)2 + (sin ω − 1

A
sin ϕ)2 =

=

√
1 +

1

A2
− 2

A
cos(ω − ϕ) =

1

A
.M1
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FIGURE 5.16. Illustration of poles resulting in the same amplitude frequency responses

Both cases are presented in Fig. 5.16.

This statement allows to use reciprocal poles instead of the original ones laying outside

the unit circle which after the gain correction preserve the magnitude response and result

in the stable discrete system.

Example 5.10 Evaluate coefficients of the discrete transfer function (5.43) for N = 3 re-

lated to the difference Eq. (5.44) approximating the ideal low-pass filter with its magnitude

frequency response

Hd(e
jωi) =

{
1 for i = 0, 1, 2, 3
0 for i = 4, 5, · · · ,M − 1

where ωi = i π
M

, M = 10.

Solution: Using the following notation

g(ωi) =
N∑

k=0

b(k)e−jkωi , g∗(ωi) =
N∑

k=0

b(k)ejkωi

f(ωi) = 1 +
N∑

k=1

a(k)e−jkωi , f ∗(ωi) = 1 +
N∑

k=1

a(k)ejkωi

it is possible to express Eq. (5.48) in the form

J(w) =
M−1∑
i=1

(

√
g(ωi)g∗(ωi)

f(ωi)f ∗(ωi)
− ∣∣Hd(e

jωi)
∣∣)2

with an asteric standing for the complex conjugate. Using further notation given by (5.45)

it is possible to evaluate gradients for k = 0, 1, · · · , N in the form

∂J(w)

∂bk

= 2
M−1∑
i=1

(√
g(ωi)g∗(ωi)

f(ωi)f ∗(ωi)
− ∣∣Hd(e

jωi)
∣∣) · 1

2

√
f(ωi)f ∗(ωi)

g(ωi)g∗(ωi)
· e−jkωig∗(ωi) + g(ωi)e

jkωi

f(ωi)f ∗(ωi)

and for k = 1, 2, · · · , N by the following expression

∂J(w)

∂ak

= 2
M−1∑
i=1

(√
g(ωi)g∗(ωi)

f(ωi)f ∗(ωi)
− ∣∣Hd(e

jωi)
∣∣) · 1

2

√
f(ωi)f ∗(ωi)

g(ωi)g∗(ωi)

· −g(ωi)g
∗(ωi)[e

−jkωif ∗(ωi) + f(ωi)e
jkωi ]

(f(ωi)f ∗(ωi))2

Starting with the initial choice of the parameter vector w = [0.1, 0.2, 0.2, 0.1,−0.7, 0.5,−0.1]

it is possible to use the method of the steepest descent for its updating in the form

wnew = wold − c
∂J(w)

∂w
(5.49)
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FIGURE 5.17. Result of the approximation of the desired frequency response with the process
of the amplitude frequency response approximation

Results for the convergence factor c = 0.01 after 5 iterations and system stabilization is

presented in Fig. 5.17.

Computer processing of the discrete transfer function design for a given magnitude fre-

quency response is presented in Algorithm 5.3 using the MATLAB notation. The whole

procedure with further modifications is included in the special function enabling the co-

efficients estimation in the form

[b, a] = yulewalk(N,u,d)

for desired frequency response d defined for frequencies u.

Example 5.11 Use coefficients evaluated in Example 5.10 to process sequence

x(n) = sin(0.3n) + sin(2.2n) (5.50)

Solution: Using difference Eq. (5.44) for N = 3 in the form

y(n) = − a(1)y(n − 1) − a(2)y(n − 2) − a(3)y(n − 3) +

+ b(0)x(n) + b(1)x(n − 1) + b(2)x(n − 2) + b(3)x(n − 3)

it is possible to find solution presented in Fig. 5.18.

5.4.2 Analog System Simulation

As direct digital IIR filter design assumes rather complicated mathematical procedure

analog systems are often used to be transformed into their discrete form. This approach is

described in many books [30, 23, 5] and is based upon the chosen frequency characteristics

in the analytical form and the corresponding transfer function evaluation.

We shall briefly mention the Butterworth filter only with its monotonous magnitude

frequency response and squared gain factor for its low-pass version and normalized unit

sampling in the form
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∣∣H(ejω)
∣∣2 =

1

1 + tan2N (ω/2)
tan2N (ωc/2)

(5.52)

for a given cutoff frequency ωc. This characteristics presented in Fig. 5.19 for various filter

orders N and chosen ωc = 1 approaches an ideal low-pass filter as N gets larger.

Relation ∣∣H(ejω)
∣∣2 = H(z) H(z−1) |z=ejω

implies that

H(z).H(z−1) =
∣∣H(ejω)

∣∣2
ejω=z

=
tan2N(ωc/2)

tan2N(ωc/2) + tan2N(ω/2)
|ejω=z

As

tan(ω/2) =
sin(ω/2)

cos(ω/2)
=

1
j
(ejω/2 − e−jω/2)

ejω/2 + e−jω/2
=

1

j

ejω − 1

ejω + 1
the previous equation can be rewritten into the form

|H(z)|2 =
tan2N(ωc/2)

tan2N(ωc/2) + (−1)N
(

z−1
z+1

)2N

= tan2N(ωc/2)
(z + 1)2N

(z + 1)2N tan2N(ωc/2) + (−1)N(z − 1)2N

Evaluating 2N poles of this rational function it is possible to find [5] that N of them is

inside the unit circle defining the discrete transfer function in the form

H(z) = c
(z + 1)N

(z − p(1))(z − p(2)) · · · (z − p(N))
(5.53)

Coefficient c can be evaluated to achieve |H(ejω)| = 1 for ω = 0 resulting in equation

c =
1

2N
(1 − p(1))(1 − p(2)) · · · (1 − p(N)) (5.54)

Evaluating values of the characteristic polynomial it is further possible to define the

discrete transfer function in the form

H(z) = c

1 +

(
N
1

)
z−1 +

(
N
2

)
z−2 + · · · +

(
N
N

)
z−N

1 + a(1)z−1 + · · · + a(N)z−N
(5.55)

The whole design procedure is presented in Algorithm 5.4.

Example 5.12 Evaluate coefficients of the low-pass Butterworth filter of order N = 4

having cutoff frequency ωc = 1 and use it to process sequence

x(n) = sin(0.3n) + sin(2.2n)
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FIGURE 5.18. Sequence x(n)=sin(0.3n)+sin(2.2n) before and after processing by an IIR filter
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Algorithm 5.3 Infinite impulse response filter design for

H(z) =

N∑
k=0

b(k)z−k

1 +
N∑

k=1

a(k)z−k

(5.51)

and desired magnitude frequency response

d = [d(1), d(2), · · · , d(M)]

for frequencies in range < 0, π > normalized to range 〈0, 1〉 defined by vector

u = [u(1), u(2), · · · , u(M)]

• choice of initial parameters w = [b, a] for b = [b(0), · · · , b(N)], a =
[a(1), · · · , a(N)] and estimation of convergence factor c

• definition of frequency matrix

E =

⎡
⎢⎢⎣

1 1 · · · 1
exp(−ju1) exp(−ju2) · · · exp(−juM)

· · ·
exp(−jNu1) exp(−jNu2) · · · exp(−jNuM)

⎤
⎥⎥⎦

• iterative process including

– evaluation of vector g = b ∗ E and g∗ =conj(g)

– evaluation of vector f = [1, a] ∗ E and f∗ =conj(f)

– amplitude frequency response evaluation
h =sqrt(g ∗ g∗)./(f ∗ f∗))

– gradient evuluation for k = 0, 1, · · · , N − 1
q(k+1)=sum((h−d).∗h.∧(−1).∗(E(k, :).∗g∗+g.∗conj(E(k, :)))./(f ∗ f∗)

– gradient evaluation for k = 1, 2, · · · , N
q(k+N+1)= −sum((h−d). ∗ h. ∧ (−1). ∗ (g. ∗ g∗)./(f . ∗ f∗)...

. ∗ (E(k, :) ∗ f∗ + f∗conj(E(k, :)))

– coefficients updating
w = w − cq; b = w(1 : N + 1); a = w(N + 2 : 2 ∗ N + 1);

• final roots evaluation
r =roots(a);

with possible modification for k = 1 : N
if abs(r(k)) > 0

b = b./abs(r(k));
r(k) = 1/abs(r(k)∗exp(j∗angle(r(k))));

end
and new coefficients definition

a =poly(r);

• final frequency plot presentation
[h,u] =freqz(b, a,M); plot(u,abs(h);
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FIGURE 5.19. Magnitude frequency response of the low-pass Butterworth filter with its cutoff
frequency ωc = 1.

Solution: Resulting difference equation

y(i) = −a(1)y(i−1)−· · ·−a(4)y(i−4)+c(x(i)+4x(i−1)+6x(i−2)+4x(i−3)+x(i−4))

(5.56)
provides results presented in Fig. 5.20.

Simple modification of the method described above enables realization of the high-pass

or band-pass filter [5] as well.

5.5 Frequency Domain Signal Processing

Signal processing in frequency domain based upon the discrete Fourier transform is often

used for direct modifications of the signal spectrum. This approach assumes no evaluation

of the difference equation coefficients as the filtering process is realized in the frequency

domain only [18, p.292, 369]. Separate steps of the evaluation procedure consist of

• the transformation of the given signal {x(n)}N−1
n=0 into the frequency domain by the

DFT
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FIGURE 5.20. Results of the given sequence processing by the low-pass Butterworth filter of
order N = 4
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Algorithm 5.4 The Butterworth low-pass filter design with its discrete transfer func-
tion

H(z) = c
(z + 1)N

(z − p(1))(z − p(2)) · · · (z − p(N))
(5.57)

• the choice of order N and cutoff frequency ωc

• selection of N poles laying inside the unit circle from poles

p(i) =
1 − tan2(ωc/2) + j2 tan(ωc/2) sin(θ(i))

1 − 2 tan(ωc/2) cos(θ(i)) + tan2(ωc/2)

for i = 1, 2, · · · , 2N where

θ(i) =

{
(i − 1)π/N for n old
(2i − 1)π/(2N) for n even

• definition of coefficient c
c =prod(1 − p)/2N

• characteristic polynomial evaluation
a = poly(p)

defining the difference equation

y(i) = − a(1)y(i − 1) − a(2)y(i − 2) − · · · − a(N)y(i − N)

+ c(x(i) +

(
N
1

)
x(i − 1) +

(
N
2

)
x(i − 2) + · · · +

(
N
N

)
x(i − N))

• multiplication of the frequency samples {X(k)}N−1
k=0 by values of the desired fre-

quency window function {H(k)}N−1
k=0 to obtain modified frequency response {Y (k)}N−1

k=0

• the transformation to the time domain through the inverse DFT to obtain signal

{y(n)}N−1
n=0

The FFT transform can be applied for this process as well and all necessary steps are

summarised using MATLAB notation in Algorithm 5.5 with presentation in Fig. 5.21.

The frequency window function {H(k)}N−1
k=0 representing magnitude frequency response

{|H(ejωk)|}N−1
k=0 for ωk = k.2π/N can stand for any type of digital filter and to evaluate real

signal {y(n)}N−1
n=0 from a real signal {x(n)}N−1

n=0 it must keep the symmetry properties of

the DFT. It is obvious that it is necessary to use sequence of values with H(k) = H(N−k)

for k = 1, 2, · · · , N − 1.

Example 5.13 Apply the frequency domain signal processing for sequence

x(n) = sin(0.1n) + sin(1.3n) + sin(2n)

where n = 0, 1, · · · , N − 1 and N = 64 using the frequency window function

H(k) =

{
1 for k = 0, 1, · · · , 10 and k = 54, 55, · · · , 63
0 for k = 11, · · · , 53

representing the low-pass filter with cutoff frequency ωc = 10(2π/N)
.
= 0.98.

Solution: Using Algorithm 5.5 with slightly modified sketch of results it is possible to

obtain solution presented in Fig. 5.21 demonstrating that the lowest frequency component

is preserved only.
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Algorithm 5.5 Frequency domain processing of signal x = [x(1), x(2), · · · , x(N)] for
a window function h = [h(1), h(2), · · · , h(N)].

• definition of vectors x and h

• transformation to the frequency domain: X =fft(x)

• spectrum modification: Y = X. ∗ h

• transformation to the time domain: y =ifft(Y)

• sketch of results
subplot(221);
plot(x);plot(y) % plot of given sequences
f = (0 : N − 1)/N ;plot(f ,real(X), f ,h) % frequency characteristics
plot(f ,real(Y))

5.6 Space-Scale Filtering

5.6.1 Wavelet Coefficients Thresholding

5.6.2 Signal and Image Denoising
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FIGURE 5.21. Principle of the frequency domain signal processing and its application for the
low-pass filtering of signal x(n) = sin(0.1n)+sin(1.3n)+sin(2n), n = 0, 1, · · · , N −1 for N = 64.
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5.7 Summary

Digital filters are used in many engineering applications for non-adaptive and adaptive

signal processing enabling signal modification, its analysis, system identification and pro-

cess control as well. This chapter presented some basic principles and methods only for

signal processing in time and frequency domain.

The main interest has been devoted to finite impulse response filters owing to their not

too complicated design, no problems with their stability and linear phase characteristics.

The use of these systems covers many areas including filter banks studied in this chapter as

well in connection with multirate systems enabling to achieve a very fast signal processing.

Description and design of infinite impulse response filters has been restricted to the

application of the methods of the least squares for the frequency characteristic approxi-

mation and basic analog system simulation.

The application of the DFT for frequency domain signal processing presented a very

efficient method for the signal spectrum modification.
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[9] J. B. J. Fourier. Théorie analytique de la chaleur. Paris, 1822.

[10] C. F. Gauss. Theoria motus corporum coelestium in sectionibus conicus solem am-

bientum. Hamburg, 1809. Translation: Dover, New York, 1963.

[11] Duane C. Hanselman and Bruce Littlefield. Mastering MATLAB 6: A Comprehensive

Tutorial and Reference . Prentice Hall, Boston, U.S.A., 2001.

[12] S. Haykin. Adaptive Filter Theory. Prentice Hall, Engelwood Cliffs, N.J., second

edition, 1991.

[13] S. Haykin and B. Van Veen. Signals and Systems. John Wiley & Sons, Inc., second

edition.

[14] W. Woods J. Multidimensional Signal, Image, and Video Processing and Coding.

Academic Press, U.S.A., 2006.

[15] L. B. Jackson. Signals, Systems and Transforms. Addison-Wesley Publishing Com-

pany, Reading, Massachusetts, 1991.

[16] J. Jan. Digital Signal Filtering, Analysis and Restoration. IEE, UK, 2000.

[17] J. Jan. Medical Image Processing, Reconstruction and Restoration. CRC Press, Inc.,

U.S.A., 2005.



90 6. References

[18] M. T. Jong. Methods of Discrete Signal and System Analysis. McGraw-Hill, Inc.,

New York, 1982.

[19] R. E. Kalman. A new approach to linear filtering and predictive problems. Trans.

ASME J. Basic Eng., 82:95–108, 1960.

[20] S. Kub́ık, Z. Kotek, V. Strejc, and J. Štecha. Teorie automatického ř́ızeńı. SNTL,
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ble entre les résultats de différentes observations. Mem. Inst. France, pages 149–154,

1810.

[22] A.S. Lim and A.V. Oppenheim. Advanced Topics in Signal Processing. Prentice Hall,

New Jersey, 1988.

[23] L. C. Ludeman. Fundamentals of Digital Signal Processing. John Wiley and Sons,

New York, 1986.

[24] P. A. Lynn. An Introduction to the Analysis and Processing of Signals. The Macmil-

lan Press Ltd, London and Basingstoke, second edition, 1982.
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