
Project

Neural Networks

Classification of EEG signal segments

Classification of values of the EEG signal $\{d(n)\}_{n=0}^{N-1}$ in the file SEGMENTS.MAT with its N = 1024 values recorded with the sampling frequency of $f_s = 128$ Hz. Indices of Q separate segments are in vector s.

The projects should include:

- 1. Introduction specifying methods of EEG signals acquisition and goals of their processing with links to references
- 2. Methodology of EEG data processing and signal segments classification
- 3. Results of spectral features estimation using the discrete Fourier transform for each segment and construction of the pattern matrix $\mathbf{P}_{2,Q}$ defined by the mean power in two selected frequency bands related to the whole power using:
 - (a) α -band: (8,13) Hz and β -band: (13,30) Hz
 - (b) α -band: (8,13) Hz and γ -band: (30,60) Hz
 - (c) β -band: (13, 30) Hz and γ -band: (30, 60) Hz
- 4. Visualization of location of signal features in individual windows and their neural network classification into the selected number of classes for S = 2, 3, 4.
- 5. Association of signal segments with individual classes together with evaluation of mean values and standard deviations of separate classes.
- 6. Discussion presenting typical signal segments for each class
- 7. Conclusion
- 8. References