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Abstract
Texture segmentation and classification form very important topics of the interdisci-

plinary area of digital signal processing with many applications in different areas includ-
ing analysis of microscopic images, biomedical image processing or detection of satellite
image components. The paper presents selected mathematical tools for pattern recognition
applied in crystalography to detect individual objects, to analyze their properties and to
find the percentage of desired individuals. Proposed methods have been verified for
simulated structures and then used for analysis of microscopic images of crystals of
different shapes and sizes.

1. Introduction
A basic problem encountered in digital image processing is in image de-noising

[1], restoration of their missing or corrupted components [2] and their enhancement [3],
feature extraction [4] and classification [5].

The paper is devoted to image segmentation and to the application of discrete
wavelet transform for image segments feature extraction using their boundary signals
[6], [7]. Image components detection [8] and feature extraction can then be followed by
classification using self-organizing neural networks [9]. The paper presents their use in
this case estimating class boundaries as well.

An example of the application of proposed methods in crystallography is presented
in Fig. 1(a) showing the microscopic image of crystals of different shapes, textures and
sizes. Similar methods can be also used in other ares including biomedical imaging,
environmental image processing or analysis of satellite observations.

 (a) GIVEN IMAGE  (b) COMPLEMENTARY BINARY IMAGE  (c) RIDGE LINES

Fig. 1. Crystallographic image processing presenting (a) microscopic image, (b) its binary representation, and
(c) ridge lines detection resulting from its watershed transform
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Fig. 2. Selected image segment anal-
ysis showing (a) its boundary signal in
three dimensions, (b) the boundary signal in
two dimensions, and (c) its discrete Fourier
transform
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 (c) SIGNAL SCALING AND WAVELET COEFFICIENTS: LEVELS 1−3
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Fig. 3. Selected image segment analysis presenting (a) two
dimensional image segment boundary signal, (b) scalogram
presenting coefficients of its decomposition into three levels,
and (c) wavelet transform coefficients organized in a row
vector

2. Image Segmentation
Segmentation represents an important initial step of image processing. Figs 1(b),(c)

present an example of a such a process for image components of different shapes and
textures and their segmentation using the watershed method [5]. The proposed algorithm
consists of these steps

• image thresholding to convert it to the black and white form
• distance and watershed transform use to find image ridge lines presented in Fig. 1(b)
• ridge lines detection presented in Fig. 1(c)

The process of classification assumes definition of a pattern matrix containing features of
separate image segments. Many possibilities of their extraction [4] include

• analysis of statistical properties of the boundary signal (see Fig. 2(a)) or segment
structure in the space domain

• transform of boundary signal or segment structure allowing feature specification in
the transform domain using discrete Fourier transform or discrete wavelet transform
among others

The boundary signal of a segment in Figs 2(a),(b) in three or two dimensions and its
discrete Fourier transform are shown in Fig. 2(c). Image features used for classification can
be based upon the mean value and the variance of discrete Fourier transform coefficients.
Wavelet transform discussed further can be even more efficient allowing multiresolution
signal or image analysis.

3. Image Wavelet Decomposition and Reconstruction

Signal wavelet decomposition using Discrete Wavelet Transform (DWT) provides
an alternative to the Discrete Fourier Transform (DFT) for signal analysis resulting in
signal decomposition into two-dimensional functions of time and scale. The main benefit
of DWT over DFT is in its multi-resolution time-scale analysis ability according to Fig.5.

The principle of signal and image wavelet decomposition and reconstruction [10],
[3] is presented in Fig. 4 for an image matrix [g(n,m)]N,M or one-dimensional signal
x[n]N,1 =[g(n, 1)]N,1 considered as a special case of an image having one column only.



 D

 D

 D

 D

 D

 D

 U

 U

 U

 U

 U

 U

 DECOMPOSITION STAGE  RECONSTRUCTION STAGE

Column
convolution

Row
convolution

Row
convolution

Column
convolution

and
downsampling

and
downsampling

and
upsampling

and
upsampling

 D.1  D.2  R.1  R.2

Original
signal

or
image

[g(n,m)]

Final
signal

or
image

[z(n,m)]

 D

 D

 D

 D

 D

 D

 U

 U

 U

 U

 U

 U

 DECOMPOSITION STAGE  RECONSTRUCTION STAGE

Column
convolution

Row
convolution

Row
convolution

Column
convolution

and
downsampling

and
downsampling

and
upsampling

and
upsampling

 D.1  D.2  R.1  R.2

Original
signal

or
image

[g(n,m)]

Final
signal

or
image

[z(n,m)]

 D

 D

 D

 D

 D

 D

 U

 U

 U

 U

 U

 U

 DECOMPOSITION STAGE  RECONSTRUCTION STAGE

Column
convolution

Row
convolution

Row
convolution

Column
convolution

and
downsampling

and
downsampling

and
upsampling

and
upsampling

 D.1  D.2  R.1  R.2

Original
signal

or
image

[g(n,m)]

Final
signal

or
image

[z(n,m)]

Fig. 4. Wavelet transform use in image decomposition and
reconstruction
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Fig. 5. Shannon wavelet and the effect of
its dilation to spectrum compression

The high-pass filter and the complementary low-pass filter is applied to image columns
and then to its rows followed by downsampling after each processing stage. Resulting
coefficients can be used for image or signal analysis or for its reconstruction again. Fig. 3
presents wavelet decomposition of a selected image segment boundary signal.

Studying the first decomposition step let us denote a column of the image matrix
[g(n,m)]N,M as signal {x(n)}N−1

n=0 =[x(0), x(1), ..., x(N−1)]′. This signal can be analyzed
by half-band low-pass and high-pass filters with their impulse responses

{s(n)}L−1
n=0 = [s(0), s(1), · · · , s(L−1)], {w(n)}L−1

n=0 = [w(0), w(1), · · · , w(L−1)] (1)

The first stage (see Fig. 4) assumes the convolution of a given signal and the appropriate
filter for decomposition of all image columns at first at first by relations

xl(n) =
L−1∑

k=0

s(k)x(n − k), xh(n) =
L−1∑

k=0

w(k)x(n − k) (2)

for all values of n followed by subsampling by factor c=2. In the following decomposition
stage D.2, the same process is applied to rows followed by row downsampling to form
four separate images. The low-low subimage can be further decomposed and results used
for image reconstruction again. In the case of one-dimensional signal processing, steps
D.2 and R.1 are omitted. The whole process can be used for signal or image

1) decomposition and perfect reconstruction allowing signal compression and de-noising
2) resolution enhancement and interpolation
3) feature extraction using the variance of summed squared coefficients

In all these cases the multiresolution properties of wavelet transform are used.

4. Image Regions Classification
Classification of Q segments using R features organized in pattern matrix PR,Q

can be realized by application of self-organizing neural networks. The number S of output
layer elements is equal to image classes and must be either defined in advance or it can
be automatically increased to create new classes. During the learning process network
weights forming matrix WS,R are changed to minimize distances between each input
vector and corresponding weights of a winning neuron characterized by its coefficients
closest to the current pattern. In case that the learning process is successfully completed
network weights belonging to separate output elements represent typical class individuals.
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Fig. 6. Results of simulated tex-
ture segmentation
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Fig. 7. Results of (a) the discrete Fourier transform, and (b) the discrete
wavelet transform for the simulated image classification into three classes

Class boundaries presented in Fig. 7 are defined by values of matrix WS,R and
for R = 2 have been evaluated by a special algorithm dividing the plane into the number
of regions equal to classes.

Results of classification of 9 image segments given in Fig. 6(a) into three classes are
presented in Fig. 7 for two selected signal features obtained (i) as the mean and variance of
discrete Fourier transform (DFT) coefficients and (ii) by the variance of discrete wavelet
transform (DWT) coefficients at the first and the second decomposition level. Location of
features is given by position of segment numbers. Results obtained by both methods are
the same but the variance of features evaluated by the DWT is smaller comparing to that
obtained by the DFT.

5. Results

The method presented has been applied for several kinds if real images. Results of
processing of the real biomedical MR image are presented in Fig. 8. Image segmentation
using watershed transform is able to detect most of image segments even though the
problem of fault class boundaries can arise in some cases.

The results of classification of Q image segments with feature matrix PR,Q =
[p1,p2, · · · ,pQ] for the selection of different sets of R = 2 features and C classes have

 (a) MR IMAGE  (b) RIDGE LINES  (c) SEGMENT

Fig. 8. An example of MR image segmentation presenting (a) original MR area, (b) ridge lines resulting from
its watershed segmentation, and (c) a selected segment standing for a vein



been numerically compared by the proposed criteria function. Each class i = 1, 2, · · · , C
can be characterized by the mean distance of column feature vectors pjk

belonging to
class segments jk for k = 1, 2, · · · , Ni from the class centre in the i−th row of matrix
WC,R = [w1,w2, · · · ,wC ]′ by relation

ClassDist(i) =
1
Ni

Ni∑

k=1

dist(pjk
,wi) (3)

where Ni represents the number of segments belonging to class i and function dist is used
for evaluation of the Euclidean distance between two vectors. Results of classification can
be numerically characterized by the mean value of average class distances related to the
mean value of class centers distances obtained after the learning process according to
relation

crit = mean(ClassDist)/mean(dist(W,W′)) (4)

This proposed Cluster Segmentation Criterion (CSC) provides low values for compact and
well separated clusters while close clusters with extensive dispersion of cluster vectors
provide high values of this criterion.

6. Conclusion

The paper presents some aspects of image components classification using wavelet
transform which provides many possibilities of detection of image segment features owing
to its multiresolution properties. Segments boundary signals were used for image clas-
sification even though there is possible to use two dimensional wavelet transform for
detection of patterns of individual segments texture, too.

Methods discussed in the paper have been applied to shape analysis of microscopic
images of crystals. Similar methods can be used in other applications in a wide range of
interdisciplinary problems of texture analysis including biomedical imaging, processing
of satellite images, communications and remote earth observations.
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