
QOS-AWARE SWITCH-FABRIC MODELLING 
IN MATLAB ENVIRONMENT 

P. Rajmic, K. Molnár 

Department of Telecommunications, Faculty of Electrical Engineering and Communication, 

Brno University of Technology, Czech Republic 

  

Abstract 

The paper deals with a neural network controlled switch fabric with frame 
prioritization support. The impact of priority levels on the functionality and 
efficiency of this switch fabric was simulated in MATLAB environment. 
Implementation details and GUI related solutions together with the simulation results 
are published in the paper. 

1 Introduction 
Our results in designing a neural network controlled switch fabric with priority support were 

published in [1,6]. The analysis of a switch fabric model, focused on the impact of the amount of 
priority levels on the system, has been evaluated and presented in them. This paper summarizes the 
results and in particular it describes the MATLAB environment created for the extensive analysis. 

The paper is organized in the following way: First, the priority switching problem is introduced 
from the mathematical point of view, then the switch fabric model used during our analysis is 
presented. The fourth chapter describes the requirements on priority level analysis, introduces the 
experiment and gives main results. The fifth chapter presents the MATLAB environment used, 
describes its functions and possibilities. 

2 Priority switching 
In the case of classical data switches all the frames are of the same priority. This means that a 

classical switch is not able to process selected frames prior to processing others. The processing order 
of the frames is derived from their receiving order. This property has a very undesirable effect on real-
time network applications. In the case of such an application, correct timing is essential and blocking 
the frames in the switch fabric can cause an incorrect function of the application. 

Modern multimedia applications require the network to support Quality of Service (QoS). The 
physical realization of QoS support in a switch can be realized by assigning different priority levels to 
the frames received. The assignment procedure depends on the QoS technology implemented and is 
beyond the of scope of this work. Based on the assigned priority the switch can decide which frames 
must be processed first. Since the switch has usually several ports, the decision process is quite 
complex. During our work a switch with a crossbar switch fabric and input buffers was modeled. 

2.1 Mathematical model of the switch 
The input buffer of each port of the switch can be described by a vector. Each element of the 

vector corresponds to one output port in the switch. This means that the number of elements in the 
vector is equal to the number of ports. The first element corresponds to the first output port, the second 
element to the second one, etc. The value of the elements is equal to the priority of the frame that must 
be forwarded to this port. If there is no frame for the given output port, the element will be equal to the 
lowest priority level. 

For example, if 0 corresponds to the highest and 255 to the lowest priority, vector (0, 5, 255, 
255) means that in a four-port switch there is buffer that contains a frame with priority 0, which must 
be forwarded to the first output port, and another frame with priority 5, which must be forwarded to 
the second port. There are no frames for the third and fourth output port. In this example there are 256 
priority levels. The impact of the amount of priority levels on the efficiency is the main interest of this 
work. 



Each port of the switch can be described in this way. Collecting these vectors we get a matrix 
expressing the recent state of all buffers. This matrix will be used for our optimization process and it 
will be called optimization matrix and marked C. 

2.2 The optimization process 
The aim of the optimization process is to find the optimal combination of frames that can be 

sent out through the output ports. This means that we must derive from the optimization matrix a 
configuration matrix describing the optimal configuration (on and off states) of the switches in the 
switch fabric. The configuration matrix can be thought of as a filter matrix containing elements with 
value 1 in the places corresponding to the selected elements in the optimization matrix and value 0 for 
all the other elements. It is important to realize that at one time only one frame can be forwarded from 
one input to one output. Thus, the configuration matrix must contain just one element with value 1 
(on-state of the switch) in each row and each column. These limitations express the confinement 
criteria of the priority switching problem. 

There are several combinations fulfilling these confinement criteria. From this set of valid 
solutions we must select the best one. If 0 is assigned to the highest priority and larger values 
correspond to lower priorities, it is considered to be the best solution when the sum of the selected 
priority values is minimal. 

Works [2] and [3] contain useful information on how to express confinement criteria so that 
they may be suitable for processing by the Hopfield neural network. 

The Hopfield neural network is based on solving an iteration process. In our case the result of 
this iteration process is a configuration matrix, containing only values 0 and 1 and fulfilling the 
previous confinement criteria. This configuration matrix is the final state of the neural network state 
matrix V updated in each iteration cycle. Before the first iteration step this state matrix is generated 
randomly. 

The state matrix V can be transformed into a state vector v using operator vec. Operator vec 
takes the columns of the matrix in the argument and arranges them one by one in vertical direction into 
a vector. The relation between output matrix V and the vector form of the output can be expressed by 

 
v = vec (V) = [v1, v2, … , vn]T (1) 

>∈<≥ nivi ;1  allfor   0  
Using the state vector v the confinement criteria can be expressed in matrix form by 

 
A.v = b  (2) 

In the case of the priority switching problem the dimension of matrix A will be 2n x n2, where n 
is the number of the ports. The structure of the first n rows is as follows: the first row will start with a 
block of n ones continued with n-1 blocks of n zeros. The second row will start with a block of n 
zeros, continued with a block of n ones and n-2 blocks of n zeros. The third row will start with 2 
blocks of n zeros, a block of n ones and n-3 blocks of n zeros, etc. Beginning with the (n+1)th row the 
structure will be different. In the (n+1)th row there will be ones at the 0th, nth, 2nth, etc. positions. In the 
(n+2)th row there will be ones at the 1st, (n+1)th, (2n+1)th, etc. positions. All the other elements will be 
zero. This structure is shown in (3). 















































=

10...010...01...0
.....
.....
.....
0010...010...010
0...010...010...01
1...110......0
..
..
..
0...01...110...0
0...01..11

A

                                                                                               (3) 

 

All elements in vector b will be ones. 
b = (1, 1, …, 1)T (4) 

If equation (2) is valid, the first n rows of matrix A will guarantee that only one active element 
will be in each row of the output matrix. The following n rows will guarantee that only one active 
element will be in each column of the output matrix, and their combination into matrix A will 
guarantee that the total number of active elements will be n. In many cases the rows of matrix A will 
be linearly dependent. Since the determinant of matrix A will be calculated later, the number of rows 
of matrix A (and vector b correspondingly) must be reduced to make them linearly independent. 

The object function of the optimization problem is used to evaluate the suitable solutions. 
Depending on the optimization problem the object function is either minimized or maximized. In our 
case the object function equals the sum of the priorities of the frames selected for transfer. During the 
solution of the priority switching problem we seek an object function with the lowest value. The object 
function f(v) can be expressed as 

f(v) = cTv (5) 

where vector c contains weights assigned to the corresponding frames. Vector c is derived from the 
optimization matrix C using operation vec. If the frame is selected, the corresponding weight value is 
added to the total sum. 

From the knowledge of matrix A (3) and vector b (4) the transformation function (6) can be 
constructed 

svv +← .zsT . (6) 

Transformation matrix Tzs is defined by (7) and vector s is defined by (8). 

 
Tzs = I – AT(AAT)–1A (7) 
s = AT(AAT)–1 b (8) 

The transformation matrix (6) ensures the convergence of the iteration process to a solution fulfilling 
the confinement criteria. Of course, fulfilling the confinement criteria is not enough. The solution also 
must minimize object function (5). This is achieved when the state vector v is updated during the 
iteration process by dv, where  

 
dv/dt = Top.v + iop (9) 

and Top and iop are expressed by (10) and (11) 
 

Top = γ (Tzs - I) (10) 

iop = γs - c (11) 



More details about these transformations can be found in [2] and [3]. 

3 Neural network controlled switch fabric 
A neural network controlled switch architecture is shown in Fig. 1. Such an architecture but 

with another type of neural network was presented in [4]. 

 
Figure 1: Neural network controlled frame switch 

From the previous chapter it can be seen that the neural network realizes two separate 
operations. The first operation is related to the confinement criteria and the second is related to the 
object function. The neural network can be modelled by a block diagram shown in Fig. 2. 

 
Figure 2: Block diagram of the neural network 

The block diagram of the neural network consists of two loops. The upper loop is responsible 
for the confinement criteria and the lower loop is responsible for minimizing object function (5). The 
operations related to the confinement criteria can be separated into two parts. The first part, defined by 
(6), ensures that the sum of all elements of the state matrix V in each row and each column will be 
equal to 1. The second part, the neurons activation function  

 









>
≤≤

<
=

1for           1
10for        

0for           0
)(

xi

xixi

xi

xi

u
uu

u
ug

 (12) 

ensures that the output values will remain within the range <0; 1>. 

4 Analysis of priority levels 
The aim of the analysis was to specify the impact of the amount of priority levels on the 

efficiency of the iteration process. There are two contradictory requirements on the amount of priority 
levels. First, the larger the amount of priority values the finer the division of the traffic processed by 



the switch. From another point of view, increasing the number of priority levels increases the 
hardware requirements. It also substantially increases the number of required iteration steps. This 
leads to an increase in operation time, which is very critical in the case of fast frame switching. 

As it came out from the results of the analysis, an extremely small amount of priority values 
messes up the algorithm and leads to invalid solutions. The amount of priority levels was determined 
by the number of bits used to express the elements of the optimization matrix C. 

The Matlab environment was used to create the simulation model used for the analysis. The 
results generated by the Matlab model were evaluated from two points of view. First, the number of 
iteration steps needed to converge to a stable state value was evaluated. Second, the successfulness of 
the iteration process was tested. The iteration process was considered successful if the generated result 
fulfilled the criteria specified earlier. 

4.1 Impact of the amount of priority levels 
The next charts summarize the results of extended testing focused on the impact of the amount 

of priority levels. The analysis was performed for several numbers of ports n in the range <3; 15>. For 
each value of n, 14 different numbers of bits were tested in the range <1; 20>. With each number of 
bits, 40 independent tests were executed with randomly generated state and optimization matrixes. 

The first chart in Fig. 3 shows the relation between the number of bits used to express priority 
levels and the average number of iterations needed to reach the stable state for n = 3, 9 and 15. Only 
successful iteration processes, i.e. those whose final stable state fulfilled the confinement criteria, were 
considered. 

 

Figure 3: Dependence of the average number of iterations on the number of bits 

 

The second chart in Fig. 4 shows the relation between the number of bits used to express 
priority levels and the successfulness of the iteration process for n = 3, 9, 15. 

 

Figure 4: Dependence of the successfulness of iteration on the number of bits 



The previous charts show that by increasing the number of bits up to a certain value (7 or 8, 
depending on n) the successfulness is rapidly increasing, but still further increase has no significant 
effect on the successfulness. It also can be seen that for very large values of bits (about 18 or 20) the 
successfulness starts to decrease. On the other hand, by increasing the number of bits the average 
number of iterations is increased. At the beginning this rise is quite steep, but for larger values it 
becomes more moderate. 

5 The MATLAB environment created for the analysis 
A MATLAB environment with graphical user interface (GUI) was developed for analysis of the 

priority switching problem, implementing the iteration process described in the preceding chapters. 
The graphical interface proposes the user to access the main parameters of the simulation process in a 
fast, convenient and intuitive way. Such parameters are number of nodes (i.e. ports), delta t, number of 
bits representing the elements of the matrix of conditions etc. The GUI allows the user to track the 
evolution of the iteration process in a graphical sub-window. In addition, the possibility to run a batch 
is implemented in the GUI. This can be very useful for needs of statistical analysis of a defined 
problem’s configuration – e.g. for a given number of nodes. 

5.1 Overall Decription of the GUI 
The file containing the GUI is an m-file executable in the MATLAB environment (version 6.1 

and later). The main window is shown in Fig. 5. The buttons managing different program functions are 
arranged at the right side of the window. The figure representing graphically (using the grey-scale) the 
degree of priority between all the nodes in the network is located in the upper-left part. The button 
’Run’ located under the figure runs the iteration process. The switch ’Step iteration’ allows the user to 
switch to the step mode (see below). The text field in the bottom-left part is informing about the 
current number of iteration cycles. The most bottom-right part of the window is reserved for the 
switch, which enables/disables recording actions to the external file. 

 

 

Figure 5: Main window of the GUI 



During working with the GUI, additional information is displayed in the MATLAB Command 
Window, such as information about the course, about parameter changes etc. 

5.2 Description and Functionality of the GUI Components 
Next, the particular components of the GUI are described. The description also implies the way 

of their use. 

Graph of the switching priorities sub-window. (see Fig. 6) The graph represents the switching 
priority between all the nodes in the network. In fact, the color boxes correspond to the elements of the 
matrix V. The elements of this matrix are real numbers between 0 and 1 included and each box in the 
graph is colored according to the value between black and white. 

Each iteration process begins with random matrix V and this matrix is recomputed during the 
process. At the end of the process (if it is “successful”, which is determined by the lower and upper 
threshold parameters, see below), all the elements of V are rounded so that it contains just black and 
white boxes (i.e. zeros and ones) as the result. In the ‘step iteration’ mode, the graph is redraw after 
each iteration step. 

 
Figure 6: Sub-window representing the switching priorities (result of a successful process) 

‘Run’ and ‘Step’ button. The button runs the iteration process. The process stops if one of the 
following conditions is satisfied: 

• matrix V computed in the latest iteration cycle satisfies the conditions prescribed to be the 
final solution matrix (the successful case), 

• the number of iteration cycles (‘iteration No’) reached the limit set in the Configure menu 
before V became the final matrix (the unsuccessful case). 

After the process stops, the button gets disabled and it is no more possible 
to push it. In the successful case, you can read the number of iterations needed to 
reach the final solution in the text field, in the unsuccessful case the field turns 
red. 

In the ‘Step iteration’ mode (see below), the ‘Run’ button changes to 
‘Step’. With this button you can now perform the iteration step-by-step, i.e. cycle 
per cycle. The current number of the iteration cycles is displayed in the text field. In the graph sub-
window you can trace the development of the iteration process. In the ‘Step iteration’ mode the limit 
of the maximum number of iterations is disabled. 

‘Step iteration’ checkbox. Checking this box turns the program into ‘step’ mode, i.e. you can trace 
the iteration process cycle-by-cycle (see above). 

‘New starting variables’ button. Pushing this button generates new variables, which are used at the 
beginning of the process. Specifically, v_old, A, b, Tzs, S. The program is “reset” to the starting point 
(however, the matrix of conditions C remains the same!). The counter of number of iterations is also 
reset to zero. 

‘Generate new conditions’ button. After pushing this button a new matrix of conditions, C, is 
generated. The elements of the matrix are independent random numbers with the uniform distribution 



of probability between 0 and 1. Moreover, the bit precision of elements of the matrix C, set in the 
‘Configure’ dialog, determines the values of these numbers: If the bit prescision is p, then there are 
exactly 2p numbers spread between 0 and 1 to be candidates for the elements of C. For example, in 
case p=2, the matrix C can consist just from numbers 0, 0.3333, 0.6666, 1. Such generation is 
provided by the program sub-function. 

‘Get/Change conditions’ button. The user can achieve two effects by pushing this button. If there is 
a matrix named ‘C’ in the MATLAB base workspace and this variable contains a square matrix with 
elements in the range 0 to 1, this matrix is loaded as the new matrix of conditions. 

In the case there is no such matrix in the base workspace, the current matrix of conditions is just 
printed out in the Command Window. 

‘Configure’ button. Pushing this buton opens a new dialog box – the configure dialog. In this dialog 
(see Fig. 7), the user can configure (set) all the important values that have effect on the iteration 
processes. Below is the description of each single parameter. 

 
Figure 7: The Configure dialog 

 

Parameters natively determining the iteration process: 

A brief description of the parameters follows; a more detailed explanation of each of them can be 
found in the previous text and in [1,6]. 

Number of nodes number of nodes in the switching problem (i.e. number of ports) 

Delta t variable determining the “duration” of the single step in each iteration cycle 

lower threshold parameter determining (along with the subsequent one, the upper threshold) if 
the matrix of priorities at the end of each iteration cycle is taken as the final 
result or not 

upper threshold analogic to the previous one 

precision of C (bits) number of bits which are used in generating the matrix of conditions, C 

 



Other parameters: 

max no of iterations how many iteration cycles are allowed to execute for each process 

 

Batch parameters: 

No of successful processes setting this parameter to n reflects in that the batch stops after 
reaching n successful processes 

Maximum no of processes this parameter defines the total number of processes allowed to run 
within the batch (i.e. successful and unsuccessful together) 

 

‘Graphs’ button. Opens new figure containing a graph related to the current iteration process. It is the 
‘Energy function plot’, with energy defined by formula mentioned in the thesis [8]. The plot represents 
the dependency of the energy function on the number of iterations, i.e. the development of the energy 
throughout the iteration process. Examples of such graphs can be seen in Fig. 8. 

0 20 40 60 80 100 120 140 160 180 200
−0.5

0

0.5

1

1.5

2

2.5
energy function plot

number of iterations

en
er

gy
 fu

nc
tio

n

 0 5 10 15 20 25 30 35
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
energy function plot

number of iterations

en
er

gy
 fu

nc
tio

n

 
Figure 8: Examples of energy plots 

‘Run batch’ button. This button starts a batch, i.e. a series of several iteration processes. This 
function is integrated to the GUI because it is very convenient for utilizing in larger analyses. In fact, 
this button simulates alternate pushing the ‘Generate new conditions’ and ‘Run’ buttons. In this way, it 
saves the user’s time and effort. 

Notice that the results of the batch processing are printed not just to the Command Window, but 
also to the output file, if it is open (see below, ‘Save to file’ checkbox). 

‘Save to file’ checkbox. Checking this box will open the report.csv file in the MATLAB 
working directory (and delete all its contents!) to store the results of the iteration processes. If there is 
no file with this name, the program creates it. Unchecking the box stops the  recording and closes the 
file. 

The data are organized in the common CSV (Comma Separated Values) format. This is useful 
mainly for exporting the data into table processors like Microsoft Excel for further analyses. An 
example of the report.csv file is shown in Fig. 9. 

6 Conclusion 
In the paper, the model of priority switching problem and its mathematic apparatus has been 

presented. A graphical user interface for MATLAB was introduced  which allows the user to virtually 
configure the switching fabric, to run experiments simulating the real situation and to get results from 
it. 

The main focus has been on the investigation how the number of priority levels affects the 
speed of finding the optimal configuration of the switch in different conditions. Based on the results of 
the analysis some general statements about the behaviour of the system can be formulated: As the 



number of nodes is increasing, the overall successfulness of processes is decreasing. Within the scope 
of a given number of nodes with 1 byte used to express the priority values the neural network operates 
effectively and the number of required iteration steps is relatively low. As the number of bits 
increases, the average number of iteration cycles increases. This trend culminates at about 10–14 bits 
and for more bits the average number of iteration cycles tends to decrease moderately. 

If a single process does not reach the solution within the number of about four-five times the 
average number of iteration cycles, it is highly probable that the process will not converge to a 
solution at all. 

 

 
* FILE OPENED 15-Nov-2004 12:20:43 
************************************** 
1:,116,iterations needed 
* Generating new matrix of conditions C 
* Maximum of iterations (154) reached. The process has been stopped 

prematurely. 
     * Generating new matrix of conditions C 

* Maximum of iterations (154) reached. The process has been stopped 
prematurely. 

* Generating new matrix of conditions C 
2:,168,iterations needed 
3:,166,iterations needed 
4:,228,iterations needed 
5:,178,iterations needed 
6:,144,iterations needed 
7:,160,iterations needed 
* Generating new matrix of conditions C 
8:,313,iterations needed 
* Generating new matrix of conditions C 
* Maximum of iterations (15400) reached. The process has been stopped 

prematurely. 
* Generating new matrix of conditions C 
* Maximum of iterations (15400) reached. The process has been stopped 

prematurely. 
* Generating new matrix of conditions C 
* Maximum of iterations (15400) reached. The process has been stopped 

prematurely. 
* Generating new matrix of conditions C 
* Maximum of iterations (15000) reached. The process has been stopped 

prematurely. 
************************************** 
FILE CLOSED 15-Nov-2004 16:17:36 

Fig. 9: An example of the report.csv file 

 

 

References 
 
[1] K. Molnár, V. Vrba, Frame priorization support for switch fabrics, 3rd International Conference 

on Networking, Gosier, 2004, pp. 141 - 146, ISBN 0-86341-326-9 
[2] S.V. Balakrishnan-Aiyer, Solving combinatorial optimization problems using neural networks with 

applications in speech recognition, University of Cambridge, United Kingdom, 1991 
[3] A.H. Gee, Problem solving with optimization networks, University of Cambridge, United 

Kingdom, 1993 
[4] K.A. Smith, Solving combinatorial optimization problems using neural networks, University of 

Melbourne, Australia, 1996 
[5] T. Troudet, S.M. Walters, Neural Network Architecture for Crossbar Switch Control, IEEE 

Transaction on Circuits and Systems, vol. 38, No. 1, 1991 



[6] K. Molnár, P. Rajmic: Impact of priority levels on the efficiency of priority switching, Proceedings 
of the 4th WSEAS International Conference on: Telecommunications and Informatics (TELE-
INFO'05), ISBN: 960-8457-11-4, pp. 48-51, Prague, 2005 

[7] The MathWorks: MATLAB - Creating Graphical User Interfaces (Version 6). PDF Help to 
MATLAB release 13. 2002. 

[8] K. Molnár, Aplikace umělých neuronových sítí ve vysokorychlostních aktivních síťových prvcích 
(Application of artificial neural networks in high-speed active network elements), in Czech, Ph.D. 
Thesis, Brno University of Technology, 2002. 

 
 
This paper has been supported by the Grant Agency of the Czech Republic (Grants No. 102/03/0560, 
102/05/P585, 102/03/0762) and the Ministry of Education of the Czech Republic (project No. 1K04116). 

 
 
Pavel Rajmic, Karol Molnár 
Department of Telecommunications, Faculty of Electrical Engineering and Communication 
Brno University of Technology 
Purkyňova 118, 618 00 Brno, Czech Republic 
rajmic@feec.vutbr.cz, molnar@feec.vutbr.cz 
phone: +420 541 149 166 


