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Abstract 

The purpose of this paper is present some numerical results of the concrete 
space-time block coded system with estimated CSI and compare the performance of a 
space-time coded system with perfect CSI (Channel State Information) and the same 
system with CSI estimated using Least Squares Method. Transmission over Multiple 
Input Multiple Output (MIMO) radio channels with rayleigh fading is considered. 
The numerical results are obtained using Matlab.   

 

High transmission data rate, spectral efficiency, and reliability are necessary for future 
communications systems. In a multipath-rich wireless channel, deploying multiple antennas at 
both the transmitter and receiver achieves high data rate, without increasing the total 
transmission power or bandwidth. When the perfect knowledge of the wireless channel 
conditions is available at the receiver, the capacity has been shown to grow linearly with the 
number of antennas. The channel conditions so-called CSI (Channel State Information)  must 
be estimated at the receiver side. To examine the system performance accurately, the 
assumption of the perfect CSI knowledge must be cancelled. System performance depends on 
the quality of channel estimate. Channel estimations are commonly obtained by transmitting 
pilot symbols known to the receiver, but added pilot symbols reduce the spectral efficiency.  

Further, the performance is investigated on non-orthogonal space-time code with 
double data rate using MIMO system with two transmitting and two receiving antennas. Least 
Squares Method for MIMO channels estimation is described and its utilization for concrete 
non-orthogonal space-time block coded system is verified. Numerical results show the Bit 
Error Rate vs. signal-to-noise ratio for two estimation cases. First case assume lower and 
second case higher number of pilot symbols. The estimations are optimized for applied space-
time code. Another numerical results show BER performance vs. number of the pilot 
symbols. It is useful for estimation, how many pilot symbols are required for near perfect CSI 
state.  

 One of the first space-time block codes is due to Alamouti [1], who suggested to  
simultaneously transmit two complex symbols c1 and c2 from two transmitting antennas 
during two symbol periods according the following matrix:  
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 Symbols c1 and c2 are transmitted by two antennas at time t and then symbols  –c2
*  

and c1
*

 are transmitted at time (t + Ts), where Ts denotes symbol interval. Columns of the 
matrix corresponds to the antennas and rows corresponds to the time slots. The rate of the 
Alamouti code is equal to R = 2/2 = 1. This code is orthogonal, it guarantees that the 
(coherent) ML detection of different symbols cn is decoupled and diversity order is equal to 
nrnt, where nr and nt is number of receiving and transmitting antennas respectively. 
Orthogonal linear space-time block code has the following property: 
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where I is unit matrix 2 x 2. The space-time decoder combines the received signals as follows: 
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where 1
~c , 2

~c  are estimates of symbols 1c , 2c  and h1, h2 are complex path gains from transmit 
antennas to the receive antenna and  1r , 2r  are received symbols at time t and (t + Ts). 

 

Non-orthogonal space-time block code 
 The two essential features of space-time block codes on orthogonal design are linearity 
and orthogonality [5]. These two properties do not fit well together with achievable symbol 
rate of the STBC. The orthogonality has to be sacrificed to increase the rate of the STBC [4]. 
The non-orthogonal space-time block code from [4] was adopted. This code has 
symbol-rate 2, employing 2 transmitting and 2 receiving antennas. Coding matrix 2 x 2 
contains 4 complex symbols encoded by the following formula: 
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where U is 2 x 2 unitary matrix, which satisfy 1)det( −=U . 

In [4], the non-orthogonal space time block code with diagonal matrix  
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and with non-diagonal matrix 
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was proposed. 

Channels estimation and system model 
We investigate a communication system over Multiple Input, Multiple Output 

(MIMO) Rayleigh flat fading channels with two transmitting and two receiving antennas. The 
channel realizations between the antennas are expressed by the matrix: 
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where the jih , are assumed uncorrelated fading path gains. 

 It is necessary to know the matrix H at receiver side for decoding of MIMO signals. It 
was mentioned, that this information is called CSI (Channel State Information) and it can be 
estimated from received signals by several methods. One of these methods is the method of 
Least Squares (LS) which is described below. 

 Least squares (LS) estimation requires pilot symbols and matrix inversion. A training 
sequence (known to the receiver) is transmitted by each transmit antenna at the beginning of 
each data burst. The received signal matrix during the two symbol periods is given by 
 VHXR += , (7) 

where H is the channel matrix, X is the transmitted matrix and V is the noise matrix. 



The ML estimate for the channel matrix is given by [6]: 
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where HH XXXX 1)( −+ = is the Moore-Penrose Pseudoinverse. 

The estimation error is given by 
 +=∆ VXH . (9) 

The computational complexity of LS estimation depends on the number of transmit 
antennas and the number of training symbols per antenna. To achieve the same BER 
performance, more pilot symbols are required as the number of transmit antennas increases. A 
longer training sequence matrix results in a more complex matrix inversion. 

At first, we assume quasi-static flat fading, it means that ijh is constant for the duration 
of M symbol periods. Further, a MIMO channel matrix is estimated also after each M symbols 
periods. It is obvious [4], that according two symbol intervals, block of four symbols 
zi, i = 1...4 is transmitted. For 2-PSK signal modulation, there are only 24 = 16 possible 
matrices X. Due to low number of possible received matrices, maximum likelihood detection 
was used. It can be shown, that code [4] with diagonal matrix (5) using 2-PSK symbols 
produces also singular matrices. Obviously, only non-singular matrices are used for 
estimation by (8). The space-time code with non-diagonal matrix (6) produces only non-
singular matrices. If the noise matrix V contains Gaussian random variable, the estimation 
error matrix H∆  also contains gaussian random variables. It can be shown, that SNR of the 
signal R and SNR of the CSI (matrix H) is for orthogonal code the same, when Least Squares 
Method is used. Numerical results show, that for used non-orthogonal code with diagonal 
matrix, SNR of the received signals is about 3 dB better than SNR of the CSI, obtained by 
Least Squares method. If using the non-diagonal matrix (6), the SNR penalty is 2,1 dB. 

Numerical results 
 The performace of system is evaluated by BER (Bit Error Rate), without any 
concatenated coding for three simulated cases. At first, we assume the perfect CSI knowledge 
at receiver side in figure 1. Then, in “case 1”, the CSI is estimated by LS (Least Squares) 
method from only one received matrix X every M symbol periods.  
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Fig. 1: Uncoded BER performance for diagonal matrix U 



Further, if two received matrices are used for the estimation in “case 2”, the error of the CSI 
estimation and BER is lower. The numerical results for M = 100 and several signal-to-noise 
conditions are shown in figure 1. 

 

2 3 4 5 6 7 8 9 10
3

3.5

4

4.5

5

5.5

6
x 10

−3

B
E

R
 [−

]

number of matrices
2 3 4 5 6 7 8 9 10

0.032

0.034

0.036

0.038

0.04

0.042

0.044

B
E

R
 [−

]
number of matrices     

 

Fig. 2: BER performance vs. number of matrice used for estimation for SNR = 5 dB (left), 
SNR = 10 dB (right) 

The numerical results on the next figures  (fig. 2) show the BER as a function of the 
number of matrices X used for estimation. We can estimate, how many matrices (training 
symbols) are required for “near” perfect CSI. 

 The next simulation verify the sensitivity of the code (4) to the channel state 
estimation errors. Error of the CSI is expessed as signal-to-noise ratio of the components of 
matric H~  compared to perfect CSI. 

0 2.5 5 7.5 10 12.5 15
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R
 [−

]

SNR [dB]

perfect CSI
CSI 10dB
CSI 15dB
CSI 20dB
CSI 25dB

 
Fig. 3: Sensitivity of the non-orthogonal code to CSI error 

 

 



Conclusion 
 We have considered a MIMO 2 x 2 scheme with non-orthogonal space-block coding. 
Numerical results show performance of concrete code in some simulated cases. We assumed 
perfect CSI knowledge and the remaining cases are for Least Squares estimation from one or 
two received matrices (case 1, case 2). It is shown, that a very simple estimation scheme 
(“case 2”) may produce only approximately 1.2 dB signal-to-noise penalty at BER level 10-2, 
compared to perfect CSI. Next results show the sensitivity of the code to channel estimation 
errors. 
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