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Abstract 

This contribution presents program in MATLAB’s Graphical User Interface (GUI) 
which can be used for investigating of the static and dynamic behaviour and adaptive 
control of the nonlinear system represented by Continuous Stirred Tank Reactor 
(CSTR). Program provides computation for various values of the input variables 
which made this program universal for the wide range of the users without 
theoretical knowledge about the modeling, simulation and control. 

1 Introduction 
Simulation is the technical discipline which shows the behavior and reactions of any system on 

its model [1]. There are many types of models; the main categories are real models and computer 
models.  

Based on this division, also simulation can be done for a real model is investigation of its 
behavior as a result of input stimulation. These simulations are done on the real model of the system. 
Computer simulation has a great importance today and MATLAB is big tool which can help you with 
computer simulation. It starts with creation of a mathematical model and the obtained equations are 
solved by using an appropriate calculation method. The importance of computer simulation will grow 
in the future when computers are faster. 

The most of the chemical processes has nonlinear properties. Computer simulation is one way 
how to examine this behaviour which is obtained by steady-state and dynamic analysis. Model of the 
system is usually represented by the set of the partial or ordinary the differential equations. 

 

2 Description of the system 
The examined system is represented by Continuous Stirred Tank Reactor (CSTR) which is 

widely used in the praxis. A graphical diagram of the CSTR reactor is shown in Figure  1. 

 
Figure  1: Continuous Stirred Tank reactor 



The reaction inside the reactor is called van der Vusse reaction. This reaction can be described 
by the following scheme:  
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The mathematical model of this reactor is described by the set of four Ordinary Differential 
Equations (ODE) which come from material and heat balances inside the reactor: 
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where cA ≥ 0, cB ≥ 0.  

In the set of equations (2) t is the time, c are concentrations, T represents temperatures, cp is 
used for specific heat capacities, q represents volumetric flow rate, Qc is heat removal, V are volumes, 
ρ represents densities, Ar is the heat exchange surface and U is the heat transfer coefficient. Indexes 
(·)A and (·)B belong to compounds A and B, (·)r denotes the reactant mixture, (·)c cooling liquid and (·)0 
are feed (inlet) values.  

The model of the reactor belongs to the class of lumped-parameter nonlinear systems. 
Nonlinearity can be found in reaction rates (kj) which are described via Arrhenius law: 
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where k0 represent pre-exponential factors and E are activation energies.  

The reaction heat (hr) in the equation (2) is expressed as: 
 2
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where hi means reaction enthalpies. 

Parameters of the reactor are given in Table 1 [1].   

 

Table 1: PARAMETERS OF THE REACTOR 

k01 = 2.145·1010 min-1 
E1/R  = 9758.3 K 
h1 =-4200 kJ.kmol-1 
Vr  = 0.01 m3 
U  = 67.2 kJ.min-1m-2K-1 
cA0 = 5.1 kmol.m-3 
mc = 5 kg 

k02 = 2.145·1010 min-1 
E2/R = 9758.3 K 
h2 = 11000 kJ.kmol-1 
ρr = 934.2 kg.m-3 
cpc = 2.0 kJ.kg-1.K-1 
Tr0 = 387.05 K 
cB0 = 0 kmol.m-3 

k03 = 1.5072·108 min-1mol-1 
E3/R = 8560 K 
h3 = 41850 kJ.kmol-1 
cpr = 3.01 kJ.kg-1.K-1 
Ar = 0.215 m2 
U  = 67.2 kJ.min-1m-2K-1 
 

 

3 Simulation program 
Simulation program was made in the MATLAB version 6.5 with the usage of the Graphic User 

Interface (GUI). The main program’s window is shown in Figure  2. 



 
Figure  2: Main window of the program 

 

Main window has 7 main parts: 

1. Working point: Here you can define working point of the system represented by: 

- input concentration of the compound A cA0 

- input concentration of the reactive temperature Tr0 

- volumetric flow rate of the reactive compound qr 

- heat removal of the cooling liquid Qc 

These parameters can be changed in the edit windows and all constants like densities, volumes, 
heat capacities are stored in the separate M-file const_allg.m. 

 

2. Steady-state analysis:  

In this part you can compute steady-state analysis of the system. Steady-state analysis for stable 
systems involves computing values of state variables in time t  ∞, when changes of these variables 
are equal to zero. That means, that the set of ODEs (2) is solved with the condition ∂(·)/∂t = 0. A 
simple iteration method was used to solve this problem. You can examine steady values of quantities 
for various rates of the volumetric flow of the reactant, qr, and heat removal of the cooling liquid, Qc, 
by pressing the button “Compute” in appropriate row.   

 

3. Dynamic analysis: 

For this nonlinear lumped-parameter system dynamic analysis involves solving the set of 
nonlinear ODE. Runge-Kutta’s standard method with a fixed step was used for solving equations (2). 
At first you can specify simulation parameters – simulation time and integration step. The behaviour 
of the system is then solved for various step changes of the input quantities ∆qr, ∆Qc, ∆cA0 and ∆Tr0. 



You can specify arbitrary number of steps separated by the semicolon or brake and computation is 
executed again by the pressing the button “Compute” in each row. If you want to observe dynamic 
analysis for all steps together, press button “Compute” in the last row of the Dynamic analysis sub-
window. 

Plotted outputs represent the difference of state variables cA, cB, Tr and Tc from their steady state 
values cA

s, cB
s, Tr

s and Tc
s, i.e. 
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4. Adaptive control:  

The adaptive control [3] with usage of polynomial synthesis [4] and pole-placement method was 
used for control of this reactor. This method could be used for systems with negative control 
properties such as non-minimum phase behaviour or transport delay.  

Adaptive approach in this work is based on choosing of the External Linear Model (ELM) of 
the nonlinear process, parameters of which are estimated recursively [5]. The resulted regulator works 
in continuous-time and its parameters are tuned according to estimated parameters of the ELM.  

There was used δ-model as an ELM in this work. This model belongs to the class of discrete 
models but its properties are different according to classical discrete model in Z-plain. 

You can choose two control system configurations one degree-of-freedom (1DOF) and two 
degrees-of-freedoms. Both configurations are displayed in Figure  3.  
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Figure  3: 1DOF and 2DOF configurations 

 

Transfer functions of the feedback and feedforward parts of the controllers have following 
forms: 
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Where parameters of the polynomials p(s), q(s) and r(s) are computed from the diophantine 
equations [6] 
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 These equations ensures stability, asymptotic tracking of the reference signal and disturbance 
attenuation. Polynomial d(s) on the right side of the (7) is stable polynomial. Roots of this polynomial 
are poles of the closed-loop and the control quality is determined by the placement of these poles. A 
method, where poles were connected to parameters of the controlled system was used to set poles of 
the characteristic polynomial. Then, the polynomial d(s) could be rewritten for aperiodical processes 
to the form 
 ( ) ( ) ( )deg degd nd s n s s α −= ⋅ +  (8) 

for α > 0 be an optional coefficient reflecting closed-loop poles and stable polynomial n(s) is 
obtained from the spectral factorization of the polynomial a(s) 
 ( ) ( ) ( ) ( )* *n s n s a s a s⋅ = ⋅  (9)  



Changes of the heat removal were used as manipulated variable and the controlled output was 
the temperature of the reactant: 
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Dynamic analysis of the output temperature shows that ELM could be expressed by a second 
order system with the relative order one described by the transfer function 
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You can choose sampling period Tv, simulation time, the placement of the root α, values of the 
wanted value (reference signal w(t)) and time where step change of the w(t) arise and limitation of the 
input variable u(t). First step change arise at the start time and it means that if the number of steps is n, 
the number of the time steps is (n – 1). You can make again as much steps as you like.   

As it is written above, adaptivity of the control process is fulfilled by continuous parameter 
estimation during the control. Recursive Least Squares (RLS) methods [7], [8] with modifications 
(exponential and directional forgetting) were used for this parameter estimation. You can choose 
method from the popup window shown in Figure  4. 

 

 
Figure  4: Popup window for identification method 

 

5. Button “help”: displays HTML of this program 

6. Button “load defaults”: rewrites values in the edit windows with the default values. 

7. Button “close”: closes all windows and quit the program 

 

4 Conclusion 
This paper presents simulation program for simulation of the steady-state, dynamics and 

adaptive control of the CSTR reactor which is typical member of the nonlinear lumped-parameters 
system. Program provides computing without the deepest theoretical knowledge about the system 
which is the main advantage of this system. User can change control configuration, identification 
methods and the most of the important parameters of the control. Program is available by writing to 
the author’s e-mail vojtesek@ft.utb.cz. 
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