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Abstract

The paper presents some numerical tests for the temperature development around

nuclear waste packages stored in vaults. We deal with two simplified models. In

the first of them, a single long cylinder of the diameter 1 m is considered. It is

filled with radioactive waste and surrounded by rock. The second model presents

a long cuboidal package stored in a vault. The computation was carried out in

Matlab using its tools for sparse matrices and iterative methods.

1 Radioactive waste and heat conduction.

The radioactive waste and spent nuclear fuel repository management belongs to the actual issues
of contemporary physics and engineering sciences. The extreme complexity of the task leads to
considering and solving the separated aspects of the problem the results of which have to be
taken into account in the design of storage and disposal facilities. In the presented paper, we
consider the heat production as a consequence of high-level radioactivity.

The paper presents numerical tests of the temperature development around waste pack-
ages stored in vaults which are built in the depth of about 300 m. The model of the repository
is based on the well known Yucca Mountain repository project and on the data presented by
some European projects [1, 2]. We deal with two models. In the first of them, a single long
steel cylinder of the diameter 1 m is considered. It is filled with radioactive waste and sur-
rounded by rock. The second model describes a long cuboidal package stored in a vault. The
numerical formulation reduces to the one-dimensional task in the first case, while it leads to a
two-dimensional problem in the second case.

We consider the equation for the heat conduction [7]

∇k∇u + q = ρc
∂u

∂t
, (1)

where k is the thermal conductivity [W/mK], q is the volumetric heat release [W/m3], ρ is the
density [kg/m3] and c is the specific heat capacity [J/kgK]. The equation has to be fulfilled in
some domain Ω the dimensions of which can be tens up to hundreds of meters. The temperature
u(x, y, z, t) depends on three space variables and on the time. The function u(., ., ., 0) is given
and it gives the initial condition

u(x, y, z, t) = u0(x, y, z) (2)

for all t = 0. The Dirichlet boundary condition

u(x, y, z, t) = 10 (3)

is considered in each point of the boundary of the domain Ω, i.e. the constant temperature 10 ◦C
sufficiently far from the heat source is considered. As follows from the character of the problem,
the constant in the Dirichlet boundary condition changes additively the solution in the whole
domain. The heat produced by the radioactive material corresponds to the approximate volu-
metric heat release 1036.10−0.056t W/m3, where t is time measured in years. The characteristics
of the radioactive packages, rock and air used in our tests can be found in Table 1.



Table 1: Constants used for heat conduction

k [W/mK] c [J/kgK] ρ [kg/m3]

Waste packages 3.1 509 5400

Rock 3.0 760 2670

Air 0.03 1000 1

2 One-dimensional model.

In order to estimate the main characteristics of the heat distribution, we can simplify the problem
in the following way. We consider a very long cylindrical package stored directly in the rock. The
problem can be then viewed as a one-dimensional problem: the temperature in the package and
around is a function of the distance from the axis of the cylinder. Reformulating the laplacian
in the cylindrical coordinates, we get the equation

k
(∂2u

∂x2
+

1

x

∂u

∂x

)

+ q = ρc
∂u

∂t

which has to be valid for x ∈ 〈0, L〉, t ∈ 〈0,∞), and the boundary conditions

∂u

∂x
= 0

for x = 0 and t ∈ 〈0,∞), and
u = 10

for x = L and t ∈ 〈0,∞). The center of the symmetry (the axis of the cylinder) corresponds to
the point x = 0. The diameter of the package is 0.5 m. The functions k, ρ and c are piecewise
constant in 〈0, L〉, while q = 1036 . 10−0.056t in 〈0, 0.5〉 and it is zero in the rest of the domain.
The quantity t is measured in years.

The finite difference method was used for the numerical solution of this task. The domain
〈0, L〉 was divided into n subintervals bounded by numbers

x0 = 0 < x1 < x2 < . . . < xn = L.

The second order difference scheme for the first and for the second derivatives was applied in
each node. Then two additional nodes behind each end of the domain have to be considered.
To avoid the evaluating the term 1/x for x = 0, the following equation can be used

lim
x→0

f ′′ +
1

x
f ′ = 2f ′′
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Figure 1: Temperature distribution around the cylindrical canister computed for 0, 1, 2, 3, 4
and 5 years after installation.
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Figure 2: Temperature progression around the cylindrical canister. The distances from the axis
of the cylinder are 2 m, 5 m and 20 m.

when supposing f ∈ C2 and f ′(0) = 0.

The resulting system of algebraical equations involve a tridiagonal matrix. The optimal
solution algorithm is then the Gauss elimination method reachable in Matlab as mldivide func-
tion.

In order to achieve a faster method, we can use nonequidistant partitioning of the domain.
The original interval 〈0, L〉 is divided into subintervals I1, I2, . . . , Im such that the k-th of them
contains the nodes

xk,1, xk,2, . . . , xk,nk
,

such that
xk−1,nk

= xk,1

for k = 1, 2, . . . ,m and the distances between any neighbors are h02
k for some constant h0 > 0,

i.e. they are twice larger that the distances between nodes in the previous interval Ik−1. The
finite difference scheme can be easily adapted for such a case. However, the matrix obtained is
no more tridiagonal thus the advantages of such an approach are problem dependent.

As a result of this simple one-dimensional problem we obtain the rough estimate of the
dimensions of the region which should be considered when computing some more specific prob-
lem. Figures 1 and 2 show the temperature distribution in the depository dependent on time. It
turns out that the package of the diameter about one meter influences the region of the diameter
about tens of meters in the first several years after storing them in the repository.

3 Two-dimensional model.

We suppose a very long cuboidal canister stored in a vault in a rock. The canister contains
radioactive material and its cross section is a square with its edge of 1.5 m long. The corridor
3 m high and 5 m wide and the package is stored nonsymmetric in it. Such a model can be
represented by the equation in two space dimensions.

The numerical solution can be obtained after applying the finite element method to the
weak formulation of the problem. This is to find the function u such that u(., t) ∈ V for all
t ∈ 〈0, T 〉 and

(∂u

∂t
, v

)

+ a(u, v) = b(v) (4)

and
(u(., 0) − u0, v) = 0 (5)



for all v ∈ V , where V is some finitedimensional subspace in H1
0 (Ω) and (., .) is the inner product

in L2(Ω). The bilinear form a is given by

a(u, v) =

∫

Ω

k

ρc

(∂u

∂x

∂v

∂x
+

∂u

∂y

∂v

∂y

)

dxdy

and the linear functional b is defined by

b(v) =

∫

Ω

q

ρc
v dxdy

Using the Crank-Nicolson computational scheme for the time variable in (4), we obtain the set
of equations

(

(uk − uk−1), v
)

+
dk

2

(

a(uk, v) + a(uk−1, v)
)

=
dk

2

(

bk(v) + bk−1(v)
)

for k = 1, 2, . . ., where dk = tk − tk−1 are the time steps and uk are the approximations of u in
the discrete times tk. The initial approximations u0 is given by (5) and the Dirichlet boundary
condition (3) is applied.

The discretization for the space variable can be done via the finite element method. We
use the bilinear finite elements with rectangular supports [5]. Similarly to the one-dimensional
case, the mesh can be sparser outside the region with the most significant temperature changes.

In spite of the one-dimensional numerical test, the computing the two-dimensional model
is much more time consuming. For solving the sets of linear algebraic equation (see e.g. [3, 6]
for the full description) we have used the conjugent gradient method (function cgs in Matlab)
without any preconditioning. The initial approximation in each step was chosen to be equal to
the solution in the previous time step. This caused the reduction of the number of the inner
iterations steps from about 31 to 24.

The predicted temperature distribution along the radioactive waste repository is indicated
in Figures 3 and 4. The situation after one month and after six months after storing the canisters
into the vault is displayed.

4 Discussion.

The introduced paper can be viewed as a starting computational configuration for further and
more detailed and involved analysis of the temperature development in the high-radioactive
waste repository facilities, i.e. including heat convection and radiation and changing the elas-
ticity properties of the material.

The values of the constants used in the heat conduction equation may vary according the
specific conditions. For example, the value k = 2 W/mK was estimated by Case and Wagner [4].

The need of more powerful computational methods and technique is self-evident. In [3, 6]
the parallel methods for computing parabolic differential equations with application to the long
term events like radioactive waste reposition can be found.
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Figure 3: Temperature distribution around the canister in a vault one month after the installa-
tion. The temperature levels are scaled by 8 degrees.
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Figure 4: Temperature distribution around the canister in a vault six months after the installa-
tion. The temperature levels are scaled by 8 degrees.
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