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Abstract

High-grade gliomas represent rapidly growing malignant brain tumours. Early
diagnostics of this decease and immediately applied treatment entails better life
prognosis for the patient. The goal of this work is to initialize the development
of an automated tumour recognition method based on computed tomography
images processing. The resulting method is aimed at early glioma diagnostics
support by distinguishing between the healthy tissue and the tumour tissue. The
proposed technique involves, subsequently, image preprocessing, feature extrac-
tion, and classification of the extracted features using an artificial neural network.
To obtain features, we compute the skewness of the discrete wavelet transform
coefficients from selected rectangular image regions using three neighboring im-
age slices to increase the number of samples while preserving good segmentation
resolution within the image. The segmentation results are evaluated in cooper-
ation with the neurologist. For all computations and visualizations, we exploit
Matlab.

1 Introduction

High-grade gliomas, namely grade III and IV, represent rapidly growing malignant brain tu-
mours. Early diagnostics of this decease and immediately applied treatment entails better life
prognosis for the patient. Computed Tomography (CT) is usually the first examination imaging
technique used when certain symptoms occur, due to its lower cost in comparison with Magnetic
Resonance (MR). The problem is that, in CT scans, early tumour stages are poorly recognizable
and, in approximately two-months time, the tumour grows to such a great size that it is too late
for effective treatment as shown in Fig. 1.

(a) Three CT slices (b) Early stage

tumour

(c) Later stage

Figure 1: Three consecutive CT image slices (a) and selected slices depicting the toumor in an
early stage (b) and in a later stage after three months with marked tumour area (c)

The goal of this work is to initialize the work on an automated CT image segmentation
method which should support early glioma diagnostics. The proposed technique involves, subse-
quently, image preprocessing by median filtering [4], feature extraction [8], and extracted features
classification using an artificial neural network [10, 9]. The segmentation results are evaluated



in cooperation with neurologist Dr. O. Vyšata. For all computations and visualizations we use
the Matlab environment [5].

2 Features Selection

The process of feature selection is a crucial part of the whole image segmentation task [8]. The
choice of feature combination is driven by the features ability to consistently characterize image
similar Regions Of Interest (ROI) and distinguish between different regions, which are in our
case the healthy and the tumour tissue.

In this paper, the design of the feature computation procedure partially inspired by the
recent work [6, 7] by Prof. Petrou from the Imperial College, London. For glioma boundaries
detection in MR images of T1 and T2 modalities, Prof. Petrou exploits statistically significant
differences between the skewness of the highly-vascular tumour regions and the regions of the
surrounding brain tissue. The exact tumour boundary is not recognizable by the eye, same as
the changes of the skewness. The skewness is the third order standardized statistical moment
and represents the measure of asymmetry of the probability distribution and equals zero for
perfectly symmetrical distributions such as the normal distribution. The skewness of a random
variable x is defined as

γ =
E[x − µ]3

σ3
(1)

where E[ ] stands for the expected value, µ is the mean of x, and σ is the standard deviation of
x, i.e. the first and the second statistical moment, resp.

Since the space-domain-based skewness standing alone is not sufficient for succesful im-
age segmentation, we also employ other features computed by the Discrete Wavelet Transform
(DWT) [3] which has been successfully used in many image segmentation applications [2].

The DWT is computed as the convolution of the signal x with a filter bank represented
by the lowpass scaling filter h0 and the highpass wavelet filter h1. This procedure and the
subsequent downsampling by 2 is given as

L1(n) =

∞
∑

k=−∞

h0(k) x(2n − k) (2)

H1(n) =

∞
∑

k=−∞

h1(k) x(2n − k) (3)

where L1 and H1 stand for the low-frequency approximation coefficients and the high-frequency
detail coefficients of level 1, resp. To obtain L2 and H2, we in this way decompose the ap-
proximation coefficients L1, etc. With the increasing decomposition level, the number of the
coefficients decreases while the frequency resolution increases and moves to lower frequencies.
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(b) Regions histograms
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(c) Histograms of LL1

Figure 2: Selected brain and tumour regions (a) and their histogram in space (b) and in the
wavelet domain for LL1 subband (c)
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(c) Skewness of the DWT coefficients

Figure 3: The mean and the standard deviation value of the skewness for selected subbands of
the absolute DWT coefficients (c) from the selected CT image regions in the later (a) and in
the early tumour stage (b)

Thanks to its separability, the 1-Dimensional (1D) DWT described above can be easily
applied to 2D images. We thus compute 1D DWT of the image row-wise, and then process the
output column-wise. As a result, we obtain four instead of two coefficients subbands for each
decomposition level commonly abbreviated as LL, LH, HL and HH.

In this paper, we compute the 2D DWT to level 1 and use the LeGall 5/3 biorthogonal
filters [1]. The features are extracted using a rectangular sliding window of the size 28×28. To
increase the number of samples, two adjacent image slices are also included into the computation,
and thus the window size is 28×28×3 (see Fig. 1a for illustration). We do not use more slices
than three because of relatively high slice thickness (3 mm) which implies that individual slices
differ a lot in terms of their image content.

We finally selected the following features by analyzing their impact on the segmentation
results and cluster compactness, suitable statistical characteristics allowing to distinguish be-
tween different ROI’s and recognize similar ROI’s (see Fig. 2 and 3), and also by using the
leave-one-out method [8].

1. The skewness in the space domain

2. The skewness in the wavelet domain, namely the skewness of the absolute values of LL,
LH, HL and HH coefficients of level 1

3. The mean of the LL coefficients of level 1

We examined a range of features including the mean and the standard deviation both
in the space domain and the wavelet domain. However, only the mean of the LL1 coefficients
produced acceptable results.

3 Region Classification Using Neural Networks

Since 1980’s, artificial Neural Networks (NN) [9, 10] have been successfully used in a wide
range of signal and image processing applications such as signal prediction, noise reduction,
and pattern classification. In this paper, we apply a self-organizing NN for extracted features
classification.

Within the segmentation process, each image region confined by a rectangular window
is represented by a feature vector of length R. These vectors computed for Q selected regions
are organized in the pattern matrix PR,Q and form clusters in the R-dimensional space. The
Q pattern vectors in P are fed into the input NN layer, while the number C of the output



%% Image Regions classification

P = normc(P); % normalize feature vectors

net = newc(minmax(P),C,alpha); % Create competitive NN layer

net.trainParam.epochs = no epochs; % set no. training epochs

net = train(net,C); % train NN

W = net.IW{1,1}; % 1-layer NN weights

A = sim(net,P); % simulate NN

Ac = vec2ind(A); % obtain class numbers

Figure 4: Algorithm for classification of the pattern matrix P into C classes and optimization
of the weights W using the Matlab Neural Network Toolbox [5]

layer elements represents the desired number of segmentation classes. In each epoch of the
network training process, the network weights WC,R are recalculated by minimizing the dis-
tances between each input pattern vector and the corresponding weights of the winning neuron
characterized by its coefficients closest to the current pattern [10]. In case that the process is
successfully completed, the network weights belonging to separate output elements represent
typical class individuals. Fig. 4 presents Matlab code for the training and simulation procedure.

In this paper, the region segmentation process comprises of training the NN on all image
regions extracted by a rectangular sliding window with half overlap, and subsequent exploita-
tion of the trained network for region classification. The algorithm comprises of the following
successive steps

1. Feature vectors computation to create the feature matrix P using the sliding window

2. Initialization of the learning process coefficients and the network weights matrix W

3. Iterative application of the competitive process and the Kohonen learning rule [10] for all
feature vectors during the learning stage

4. NN simulation to assign class numbers to individual feature vectors

5. Evaluation of the regions classification results
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Figure 5: Segmentation results for patient 1 presenting clusters for features 1 and 5 (a), classi-
fication by the neural network (b), and tumour detection (c) with the marked suspected region
and regions classified as tumour
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Figure 6: Segmentation results for patient 2 displaying classification by the neural network (a),
and tumour detection (b) with the marked suspected region and regions classified as tumour

To evaluate the results of Q image segments classification into C classes, we exploit the
Cluster Segmentation Criterion (CSC) [2]. This criterion is designed in the following manner.
Each class i=1, 2, . . . , C of Ni assigned segments is characterized by the mean Euclidian distance
di of the column feature vectors P•jk

corresponding to the class members indices {jk}
Ni

k=1
from

the class center stated in the i-th row Wi• of the weight matrix given by relation

di =
1

Ni

Ni
∑

k=1

dist(P•jk
,Wi•) =

1

Ni

Ni
∑

k=1

√

√

√

√

R
∑

r=1

(Pr,jk
− Wi,r)2 (4)

The classification results can thus be characterized by the mean of intra-class distances related
to the mean of the class-center distances representing

(

C
2

)

combinations.

CSC =
1

C

C
∑

i=1

di /
1

(

C
2

)

C−1
∑

m=1

C
∑

n=m+1

√

√

√

√

R
∑

r=1

(Wm,r − Wn,r)2 (5)

This criterion produces low values for compact and well separated clusters while closely spaced
clusters with extensive dispersion result in high CSC values.

4 Results

Apart from evaluating clusters compactness using the CSC criterion, it is important for the
algorithm setup to evaluate the percentage of regions misclassified as tumour by comparing
the automated segmentation results with the correct image segmentation which is carried out
manually exploiting the knowledge of tumour position from the images of later stages. Tab. 1
summarizes the segmentation results for two patients.

The CT image segmentation results are displayed in Fig. 5 and Fig. 6. The subimages
on the right of both figures present the tumour diagnostics results. The pink rectangle marks
the region, where we suspect the tumour to have already originated and pink letter ’T’ labels
regions classified as the tumour.

Table 1: The Overall Segmentation Results for Patient 1 and Patient 2

Patient Number Cut Size
Percentage of Regions

Misclassified as Tumour
CSC Criterion

1 224×140 31.8 % 0.47

2 140×224 57.1 % 0.33



Images of both patients are segmented by feature classification into five classes. In case
of patient 1, the resulting number of classes is four. In case of patient 2, the resulting number
of classes is five while the number 7 in Fig. 6 signifies the regions excluded from classification as
outliers owing to the content of the bone tissue.

5 Conclusions

As demonstrated above, the proposed method of CT image content recognition gives good results
which is quite promising for the future work on automated glioma diagnostics support. Further
effort should be aimed at improving the feature clusters quality by finding the best features
combination and automating the evaluation of the neural network classification output. The
improved method should then be tested for more image datasets and the results should be
further consulted with the neurologist.
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Zdeněk Měř́ınský, Eva Hošťálková, and Prof. Aleš Procházka
Institute of Chemical Technology, Prague
Department of Computing and Control Engineering
Technická 1905, 166 28 Prague 6
Phone.: +420-220 442 970, +420-220 444 198, Fax: +420-220 445 053
Zdenek.Merinsky@vscht.cz, Eva.Hostalkova@vscht.cz , A.Prochazka@ieee.org
http://dsp.vscht.cz


