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Abstract 

This paper deals with the development of a low cost self-balancing vehicle aimed to be 
used as  a teaching tool. Matlab/Simulink tools intensively supported the development 
process. According to the model-based design approach, an electro-mechanical model 
was created as an initial step. The mechanical part was implemented into 
SimMechanics, and a DC motor was considered as a static system. Next, an MF624 
multifunction I/O card together with a Real-Time Toolbox were used for data 
acquisition. Furthermore, the Simulink Parameter Estimation blockset used the 
measured data for the estimation of the simulation model parameters. In the 
following step, several sensory processing and control strategies were tested through 
offline simulations. The finally adopted controller consists of a complementary filter 
and two independent PIDs with additional feedforward friction compensation. The C-
code for the target hardware (16-bit dsPIC33 micro-controller) was automatically 
generated from the Simulink model via Real Time Workshop, Real Time Embedded 
Coder and Kerhuel blockset. The resulting platform will be used as a demonstrator in 
the teaching of several Mechatronics courses and further improved through the next 
Master and Bachelor theses. 

1 Introduction 

The Segway®[1] balancing vehicle is an ideal platform for the demonstration of most aspects of  
Mechatronics, including the modelling and identification of the electromechanical system and its 
embedded control.  

Mechatronics is usually defined as a combination of mechanics, electronics and computer 
control. Often [2] an interaction with an environment is emphasized: the mechatronic system senses 
the information from the environment; next it processes it and finally reacts through actuators. 
Furthermore, the system must have a significantly higher level of functionality or even a completely 
new functionality must be enabled.  

Today’s teaching of technical courses must also focus on the motivation of students. One of the 
most useful approaches is the implementation of hands-on laboratory exercises as part of the study. 
The inverted pendulum (the most widely used educational model in control engineering [3]), the 
helicopter, magnetic levitation and drive system control are examples of proven objects for the 
teaching of modelling, identification and control [4]. Also, the control of a Segway®-like unstable 
balancing vehicle is very attractive and thus could be successfully used in the teaching of 
Mechatronics.  

This paper briefly presents the development of a balancing vehicle including mechanical parts, 
electronics and embedded control. The aim of the work was to build an open (both hardware and 
software) experimental platform for the study of algorithms and approaches (including fault 
diagnostics and other advanced model-based techniques) for vehicle control.  

 

2 First experiments 

The development of the balancing vehicle started with the first testing platform made of 
components already available in our laboratory. The wheels were driven by two 350W DC motors by 
means of  a chain transmission, as it is very  common in many DIY constructions.  



The very first experiments were aimed at the control of the balancing plate only (Fig. 1). H-
bridges and sensors were connected to the MF624 I/O card [5] and all experiments were performed 
directly in the Simulink with the Real-Time Toolbox (RTT). The very important advantage of this 
solution is no need for compilation and thus very comfortable and fast development is allowed (see [4] 
for more information).  

In the next steps, many signal processing and control algorithms were tested on the “wooden” 
platform leading to the fully functional vehicle capable  of balancing with a human, yet still connected 
via a bunch of wires to a PC (Fig. 2).  

 

Figure 1: Testing platform at very early stage connected to Simulink via MF624 and supported by an 
empty cup of coffee 

   

Figure 2: Self-balancing H1 controlled using MF624 and Real-Time Toolbox directly from Simulink 
(left); Detail of DC motor, H-bridge and gyro (right) 

 



3 Modelling and parameter estimation 

The previous section (as well as many DIY variants of a balancing transporter) shows that it is 
possible to build the device just with the hardware, PID and the complementary filter. However, there 
are several reasons for the need for a little bit more complicated approach: 

• The pedagogical aspect: many complicated systems cannot be designed and tested just 
with a trial and error method, 

• Optimization of drives selection: it could be difficult to decide what kind of the DC 
motor to choose without some computation, 

• Testing of signal processing and/or the control algorithm through offline simulation 
could be useful even in such a simple example of a balancing vehicle, 

• The need for more sophisticated control, safety and fault detection algorithms, which 
are often based on model knowledge.  

 Fig. 3 shows the overview of the real-time applications in the Simulink environment. In this 
paper the offline simulation and the mixture of Rapid Control Prototyping and Production Code 
Generation is discussed.  

 

Figure 3: Real-Time applications in a Simulink environment context [4] 

3.1 Electro-mechanical model 

The vehicle has three degrees of mechanical freedom: translation of the vehicle, balancing and 
turning. The balancing and turning movements can be separated without significant loss of the 
modelling precision as is shown in [6].  



The model of the dynamics of the mechanical subsystem was implemented in SimMechanics. 
The rolling contact (wheel – road) cannot be directly modelled in SimMechanics and therefore it was 
replaced by the combination of Prismatic and Revolute joints together with the appropriate 
compensation of the driving torque. The resulting model is shown in Fig. 4.  

 

Figure 4: Model of mechanical subsystem implemented in Simulink/SimMechanics 

The DC motor is usually modelled using the first order ODE. However, the dynamics of the 
electrical subsystem can be neglected and thus the static equation was used.  

3.2 Estimation of parameters  

The key problem in modelling is the determination of the parameters of the system. Some of 
them are relatively easy to obtain (weight, dimensions) but, for example, the viscous or dry friction 
cannot be measured directly. 

There are two main approaches with related software tools available in the MATLAB/Simulink 
environment. Both of them require measured data of a particular real system but differ as follows: 

• System Identification Toolbox uses the measured data to create (usually linear) 
models (e.g. ARX, OE) without any knowledge of the physical substance of the system. 

• Simulink Parameter Estimation uses the measured data to find the parameters of the 
given Simulink model constructed using physical laws or other knowledge of the 
system.  

Clearly the second option was used in our case. All the measured data was acquired via the 
MF624 I/O card. The estimation process was done in steps starting with the parameters of the DC 
motor, proceeding to the parameters of the whole vehicle.  

 

4 Control algorithm and hardware 

The final construction of the vehicle is equipped with the following sensors:  
• Gyro for balancing (ADXRS150EB) 
• 3D accelerometer for balancing (MMA 7260QT) 
• Gyro for turning  
• 2 encoders on motors (20 pulses per wheel revolution) 
• Potentiometer for turning (doubled) 
• 2 current sensors on motors 



• 1 emergency stop button  
• Battery voltage measurement.  

The present control algorithm does not use encoders (turning is measured using the gyro) since 
their resolution is very raw. However, the additional information can be used, for example, for 
diagnostics or fault detection algorithms in the future.  

 

Figure 5: Schematic of inputs and outputs to/from the dsPIC micro-controller 

4.1 Complementary filter 

The most important and most interesting task of the control is the determination of the real 
inclination angle of the platform. In comparison with the classical inverted pendulum, the angle is not 
directly measurable. It must be obtained indirectly using one of these three options:     

• Accelerometer – the inclination is computed as a projection of the vector of gravity into the 
horizontal axis of the sensor. But also the forward acceleration is projected into the measured 
signal and thus the angle can be computed very incorrectly. 

• Gyro – the angle is obtained as the integration of the measured angular velocity. The problem 
is the drift of the gyro.  

• Combination of accelerometer and gyro - the right practical option. Besides the famous 
Kalman Filter, the very simple Complementary filter [7] can be used: 

1(1 )( )k k GYRO S ACCc T cϕ ϕ ϕ ϕ−= − + +ɺ , 

where GYROϕɺ is the measured angular velocity, and ACCϕ  is the (static) angle computed from the 
accelerometer signal. The tuning of the filter lies in the selection of the constant c representing the 
weight of the accelerometer input. The present control algorithm runs with Ts = 10ms and uses c = 
0,02. Thus the gyro is a significantly major input to the filter and the small influence of the 
accelerometer is just used for drift compensation.   

4.2 Controller and automatically generated C-code 

The resulting controller structure is very simple and consists of PID for balancing, P regulator 
for turning and the complementary filter. Additionally, the constant feedforward friction compensation 
is used. 

While the Real-Time Toolbox and the MF624 I/O card were used in the rapid control 
prototyping phase (Fig. 2, 3), the Microchip 16-bit dsPIC33 microcontroller is used to control the final 
autonomous vehicle. We developed our own modular system with the universal processor module and 
ad-hoc developed connector board (Fig. 6).  



 

Figure 6: Modular board with dsPIC microcontroller 

The C-code for dsPIC33 was generated automatically from the Simulink. The following 
software tools are employed: 

• Real-Time Workshop (renamed to Simulink Coder) 

• Real-Time Workshop Embedded Coder (renamed to Embedded Coder) 

• Kerhuel blockset [8] for support of the subset of the Microchip devices 

• MPLAB compiler. 

The simulation model used in the rapid control prototyping phase can be used only with minor 
adjustment (related to fixed step solver) and new I/O blocks (Fig. 7). 

 

 

Figure 7: Simulation model used for the C-code generation for dsPIC using Kerhuel blockset 

 

5 Conclusion 

Three students spent 1,5 years working on the vehicle during they Master’s thesis work 
[9,10,11]. The final variant has robust and matured mechanical construction (Fig. 8), can be operated 
for approx. 30min. and has an integrated battery charger. The stabilization algorithm works perfectly 
but a subjective impression of the drive is that it’s a little bit less comfortable compared to a Segway®. 



Modern software tools based on MATLAB/Simulink were used during the development process 
for the modelling, parameter estimation and control tuning. The Real-Time Toolbox and MF624 I/O 
card were used in the majority of experiments (without code generation). Furthermore, the dsPIC33 
control hardware was programmed using the automatically generated C-code.  

 Many control and signal processing algorithms were tested. However, the final implemented 
algorithm is very simple, consisting of PID, P regulator and Complementary filter. 

The resulting vehicle will be used as a demonstrator in several courses of mechatronics taught at 
Brno University of Technology.  

   
Figure 8: Detailed view and cross-section of DC motors and wheel mounting (without 

electronics) 

 
Figure 9: Balancing vehicle with one of its author 
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