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Abstract

This paper deals with using MATLAB function and tools for designing first-order
analogue Chebysev filters and IIR Chebysev filters. The first part of this paper is
focused on a design of analogue filter via Chebyshev approximation approach, i. e.
features and mathematical background of this iso-extremal approximation,
approximation of normalized low-pass (NLP, also NDP in Czech) filter, and
mathematical formulas for calculating fundamental parameters of NLP, such as
constructing a tolerance scheme, Chebyshev approximation order, poles of transfer
function, characteristic equation, and group delay. Due to frequency transformation
formulas implemented in MATLAB, un-normalized forms of frequency functions for
low-pass (LP, also DP in Czech), high-pass (HP, also the same in Czech), band-pass
(BP, also PP in Czech), and band-stop (BS, also PZ in Czech) analogue filters are also
available. The second part of this paper describes designing the first-order IIR
Chebyshev filter via implemented MATLAB functions and Filter Visualization Tool
(FVT), whereas conversion from an analogue form into a digital form is done and
discussed for bilinear (Tustin) transformation only. Naturally, both design
approaches are illustrated in form of some practical examples.

1 Introduction to Chebyshev polynomials

Chebyshev polynomials are some sequence of classic orthogonal polynomials, which are related
to famous de Moivre’s formula and which can be defined recursively. We usually distinguish between
two kinds of Chebyshev polynomials, thus [1]:

o thefirstkind T, (x),
o thesecondkind U, (x).

These Chebyshev polynomials are polynomials of nth degree and their sequence composes a
polynomial sequence. In practical use, the Chebyshev polynomials are important in approximation
theory, whereas the roots of the first kind of Chebyshev polynomials (so-called Chebyshev nodes) are
used in polynomial interpolation [1]. This paper is focused on describing mathematical background of
the first kind only.

The Chebyshev polynomials are also the solutions of these ordinary differential equations
(ODE), thus [1]:

for the first kind
x93 1 (0= x-S { ()07 - £ (x)= 0
dx? dx
where f(x) =y= Tn(x) solution of this Chebyshev ODE.

for the second kind

i) L {1 03 L {t () en-(2)- 1) =0
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where  f (x) =y= Un(x) solution of this Chebyshev ODE.

)

)



These second-order ODEs are special cases of Sturm-Liouville differential equation [2], because
it is possible to transform Eq. (1) and Eq. (2) into these forms:

for the first kind

2-%{(1—%)-%f(x)}+2-n2-f(x):0 3)
where  f(x)=y=T,(x) solution of this Chebyshev ODE.
for the second kind
) 10t 2nre2 (-0 @
where  f (x) =y=U, x) solution of this Chebyshev ODE.

2 Mathematical background

This part is centred on detail description of mathematical background, related to the Chebyshev
polynomials — e g. definitions, orthogonality, representations, generating functions, recurrence
relation, roots, and extrema.

2.1 Orthogonality

Generally, both kinds of Chebyshev polynomials are orthogonal; in case of the first kind, we
assume:

e interval x e (-1,+1),
1
e weight function w(x)= (1— xz)_E :

Based on Sturm-Liouville theory and form of an orthonormal basis in the Hilbert space, we
assume this formula [1] [4]:

b " =0 m=#n
[ £200)- £,(0)- w(x)-dx = [T, (x)-T,,(x)- lcf‘xz —d=z/2=|T,(x|’'m=nn=0 (5
a -1 =7Z'=ITO(X]|2 m=n=0

2.2 Representation

2.2.1 Polynomial representation

The first kind of Chebyshev polynomials can be defined and represented in these several forms.
Because the Chebyshev polynomials are special cases of the ultraspherical (or Gegenbauer)
polynomials, which themselves are special cases of Jacobi (or hypergeometric) polynomials [1] [4],
because Gegenbauer differential equation has this form:

(1—xz)-g—;{f(x)}—(2~a+1)-x~%{f(x)}+n-(n+2-a)- f(x)=0 (6)

Especially, if « =0, then we get the form of Eq. (1); in case of « =1, we get the form of Eq.
(2). Following formulas are focused on the case of « =0. The solution of Eq. (6) is given by
Gegenbauer polynomials C“)(x)[2], and Jacobi polynomials P*")(x)[3], when a=h=-0,5.

-C3(x) (7)

where



P(;;j(x): (_%)n!.(l—x); 1+ x)% : ::Xn {(1 x)" 2 (1+ x)"2 l} (82)

" 2".n
and [2]
0 _[”/2]( l) (n m-— l)' ” —-2m [n/Z] (n m) n-2:m
C, (X)_m:O (n . m).(m!) Z:‘) n 2 ml (m!) '(Z'X) (8b)

Generalized form of Eq. (8b) is given by Eq. (9a), leading to Rodrigues formula, thus [2]:

“ W2 (—1)".T(h-m+a) h2m F(a+2j r+2-a) _(c3es
C: )(X):m_oF(a)-(n—Z-m)!.(m!)'(z'x) T 1(2-) .F(n+a+1j.Pn[
2

and (Rodrigues formula) [2]

A S B

For the Chebyshev polynomials of the first kind, the Rodrigues formula has this form [4]:

W 2o Loyt S o

2-(2-n-1) {(2-n-1)
and
T”(X):(;?!n F(n)(g(z;l) Gglij(x):g(—n_z')"%(”n))egiij(x)zg C2(x) (10b)

The result formulas in Eq. (7) and Eq. (10b) are the same.

For each non-negative integer n, both kinds of Chebyshev polynomials are polynomials of nth
degree. They are even or odd function of x, whereas n is even or odd. In case of the first kind, we
assume [1]:

T,(L-2-%)= (1) T (%) (11)

Naturally, other polynomial sequences like Lucas polynomials, Dickson polynomials, or
Fibonacci polynomials are also related to both kinds of Chebyshev polynomials. [1]

2.2.2 Integral representation

In case of an integral representation of the Chebyshev polynomials of the first kind, we assume

this formula [1]:
1

AR e

RN ) -dz (12)

T, (%)=

I imaginary unit,

C arbitrary Jordan curve in the form of some integration area,
7= inner point of the integration area,

z=%1 outer points of the integration area.

2.2.3 Trigonometric representation

In case of trigonometric representation of the Chebyshev polynomials of the first kind, let us
consider these formulas, based on Euler’s formula and de Moivre’s formula:

for cosine function



x = c0os(®) = T,[x = cos(®)] = cos(n - @) = % fexp(i-n-®)+exp(~i-n-o)} (13a)

then [1] [5]
T,[cos(®)] = cos(n- @) = cos[n-arccos(x)] |x| <1 (13b)

for hyperbolic cosine function

x = cosh(®) = T, [x = cosh(®)] = cosh(n - @) = % {exp(n-®)+exp(—n- @)} (14a)

then [1] [5]
T, [cosh(®)] = cosh(n- @) = cosh[n-argcosh(x)] |x/>1 (14b)
Eqg. (13b) and Eq. (14b) show, different approaches to defining the Chebyshev polynomials lead

to different explicit formulas — it is very useful for designing the Chebyshev filter not only in pass
band via Eq. (13b), but also in stop band via Eq. (14b).

The Chebyshev polynomials are also the solutions of Pell equation, which is any Diophantine
equation having this form [6]:
x> -n-y* =1 (15a)

If we consider features of Euler’s formula, de Moivre’s formula, and Eq. (13a), then we can
write Eq. (15a) in this form, thus:

T2(x)-(x* =1)-UZ2,(x) = T2(x)— (x? —1)-i2 : [iTn (x)} ~1 (15b)

n° | dx

If we consider T,[x = cos(®)] and U, ,[x = cos(®)]=sin(n- ®)/sin(d), then we get Euler’s
formula:
sin’(n- @)

cos’(n-®)—(-1)-sin*(®)- (@)

= cos’(n-@)+sin’(n-®)=1 (15¢)

If we also consider Eq. (15¢), A?(x)=T?2(x) and B*(x)= (x2 —1)~Uf_1(x), then we get a

n

fundamental solution of Eq. (15b), based on de Moivre’s formula, because:
A?(x) - B(x) = [A(x) + B(x)]-[A(x)- B(x)]=1 (154)
and
,,[x = cos(®)] = Alcos(®)]+ B[cos(®)] = cos(n- @)+ i -sin(n - @) = [cos(®)+ i -sin(D)][' (15€)
and (fundamental solution)

o1, = cos(®)] = os(@) £ 1) sin?(@)] = g, (x) =[x+ 1] (15

then

T(X) (01 +(/)2 [X-F\/X - r [X-\/X — r
" 2
Eq. (15g) is directly related to Eq. (7) and Eq. (8b).
2.3 Generating functions

Based on the form of Eq. (15f), it is possible to define so-called exponential generating function

for T, (x) in this form [1]:
fﬁn et ZGW _explx+ m)ﬂ; expl[x- m)'t|(16a)

n=

(150)

Generating functions for T, (x) have these forms, thus [1] [4]:



G[T,(x).t]= ZT D SV € [ R LS S (17a)

—~ 1-2-x-t+t* 1-2-x-t+t°
and
G[T(x),t]:T(x)+2-iT(x)-t”:iu (x)-t" - ¢ ot (17b)
2L 0 e " & 1-2-X-t+t2 1-2-x-t+t?

for |x| <1land |t| <1

2.4 Recurrence relation

Both kinds of Chebyshev polynomials are defined by the same recurrence relation [4]. Let us

consider:
Q. (x)={T, (x).U, (x); (182)
then
Qua(X)=2xQ,(%)-Qy4(x) (18b)
where T (x)=cos(0-®)=1 zero-order Ch. polynomial,
T (x)= cos(l- @) = cos(®) = x first-order Ch. polynomial,
T, (X)=cos(2-®)=2-x* -1 second-order Ch. polynomial,
Tnzs(x):> 003(3 CD):> 4-x°-3-x third-order Ch. polynomial,
T_.(x)=cos(4-®)=8-x*-8-x* +1 fourth-order Ch. polynomial.

Eq. (18b) is also very useful, because it is closely related to characteristic equation and
characteristic function of designed Chebyshev filter.

2.5 Roots and extrema

The Chebyshev polynomial of the nth order has ndifferent roots (Chebyshev nodes) in the
closed interval <—1,+1>. These roots are used as polynomial interpolation nodes [1], whereas

approach is based on solving this goniometrical equation:

T+2-K-x 72'(

COS(X)=0:>X=%+|('7Z' 1+2-k) kezZ (19a)

Generally, zeros of T, (x) occur, when:

Xok =cos(%- 2-?—1) k=12...,n (19b)

where  foreven n k=12,...,n/2,
for odd n k=12,...,(n-1)/2.

Generally, extrema of T, (x) occur, when:

Xg = cos(k'TﬁJ k=01...,n (19c)

Eqg. (19b) is also useful for calculating the zeros of the characteristic equation of design
Chebyshev filter.

3 Designing the first-order analogue Chebyshev filter

Designing the first-order analogue Chebyshev filter is based on the Chebyshev approximation,
which uses so-called first Chebyshev approximation method. In this case, we find some polynomial

solution in open interval Q= (—1,+1). This solution has to approximate zero as best and with regular



divergence [5]. We assume some approximate differential equation; in this case it is the Pell equation,
mentioned in Eq. (15b) and converted into this form, thus:

b- Xz)'[%ﬂ (X)} =n*-p-T(0) 20)

where n an order of the first kind Chebyshev polynomials, or an approx. order.

3.1 Approximation of normalized low-pass filter

This approximation is based on the first-order Chebyshev polynomials and focused on the
normalized low-pass (NLP) filter only. Due to frequency normalization, it is possible to convert ideal
LP’s requirements into a NLP prototype. Naturally, it is also possible to transform requirements for
other types of analogue filters (LP, HP, BP, and BS) into NLP filter, namely via other frequency
formulas and/or using implemented MATLAB functions. The standard results of this approximation
approach are as follows, thus:

e transfer function,
e characteristic equation,
e group delay.
There are defined and shown some ideal requirements for frequency-magnitude characteristic of
an ideal low-pass (LP) filter, see the right part of Fig. (1). Radial frequency @, is a cut-off radial

frequency of filter pass-band, where magnitude values at positive radial frequencies are given by this
formula, thus [5]:

HALP(j'a)XE

HADP(j'a)X:{:l a)€<0’wp> (21a)

=0 oe(w,,+o)

Analogously to ideal low-pass filter, there are defined and shown some ideal requirements for
normalized frequency-magnitude characteristic of an ideal normalized low-pass (NLP) filter, see the

left part of Fig. (1). Normalized radial frequency Q  , naturally equalled to 1, is a normalized cut-off

radial frequency of normalized filter pass-band, where magnitude values at positive normalized radial
frequencies are given by this formula, thus [5]:

S oNln (oo )=1 Qe(0Q,)=(01)
HNLP(J a)j— HNDP(J w)(_{zo Qe(st,+oo) (21b)

In case of NLP filter, we consider some scaling in the form of frequency normalization, when
we create so-called normalized complex area:

S o+jw o . o . 0]
p:—z—J=—+j'—=2+j-Q:>Qp:— (21c)
wp a)P a)P a)p a)p
where S un-normalized Laplace operator,
p normalized Laplace operator,
z real axis of normalized complex area,
Q imaginary axis of normalized complex area.
[H(jQ)| [H{jw)]
1 1
0 Q=1 Q] 0 w w [rad - 7]

p

Figure 1: Ideal frequency-magnitude characteristics — normalized low-pass filter (NLP, left) and (un-
normalized) low-pass filter (LP, right)



Because frequency-magnitude characteristics of an ideal NLP filter need not meet all the
feasibility requirements [5], it is required to consider so-called tolerance scheme, or standard tolerance
scheme (see Fig.2).

[H(jQ) | [H(jQ)|
1 1
—=0.05ay 1
10 i V14g2
1
107005a: o] b [ R
I \'H(MJ I
0 0,=1 0  Q[] 0 0,=1 0 Q[

Figure 2: Normalized low-pass filter — tolerance scheme (left; including the primary parameters) and
standard tolerance scheme (right; including the secondary parameters)

Some approximating rational function can approximate magnitude (equalled to 1) in band-pass,
whereas certain dB-based error value (a,) could be detected. If we approximate zero-magnitude in
transitional band, corresponding characteristic must be continuous. Selectivity of designed filter is
given by the transitional band, which is limited by dimensionless frequency of band-stop (€2,) and
corresponding approximation error value (@) in this band. Parameters included in tolerance scheme

represent so-called primary parameters related to the requirements for solving the problem of NLP’s
synthesis. Fortunately, the tolerance scheme’s requirements could be given by so-called secondary
parameters related to the standard tolerance scheme [5]. There are corresponding formulas between the
tolerance scheme and the standard tolerance one, see corresponding magnitude levels shown in Fig. 2.

For band-pass, this identity is available, thus:
1 {ap =10-log(L+£?)

—_— 22
frer e = & =+10""% —1 (22

For band-stop, this identity is available, thus:

10—0,05-ap _

2
a, =10- Iog(1+ E_Zj

1

10-0%% :;2: |g| =e=k, - J100%a _q (22b)
1+(8J |k1|:k1:;
Kk, V100t _1

For both bands, we consider this ratio formula;
Q Q
k Q

S

The Chebyshev approximation is the most important iso-extremal approximation, providing
some oscillating characteristics either in band-pass (the first kind), in band-stop (the second kind), or
in both bands. The iso-extermal approximations satisfy the requirements at the lowest order of
approximating function. [5]

At the Chebyshev approximation of the NLP filter, the characteristic function, defining iso-
extremal characteristic of approximation error in band-pass, is given by the Chebyshev polynomials.

3.2 Formulas for the NLP filter approximation

Following formulas will be used in practical example, so they are mentioned here.



3.2.1 Approximation order

The approximation order is one of the most important parameters, because other formulas are
dependent upon its value, which is given by this formula [5]:

Q Q)
p
argcosh[k j K, K,

n> Ql =— —— neZ*\{0} (23)
e Q Q

argcosh( " J Inl --° (pj _1
k, k

Eq. (23) does not guarantee, that nwill be really an integer value (even or odd), so it is required
to recalculate the values of a,and k,, see Eq. (22b), or the values of Q_and k , see Eq. (22c).

3.2.2 Poles of transfer function

There are two ways, how to calculate the poles of NLP’s transfer function. The first way is
based on this equation (generalized form) [5]:

n -n 2
ﬁ(ffﬂzz R : BRSNS T8 At B (24a)
1+£°-T2HQ) [x"+x-“J 2
1+ ———
2
where
1
. 2v-1 ﬁ B .‘2<v—lﬂ
X,=X"= X} =— 20 .B* =—£ /1+i2—1J e 2 (24b)
& &
and

1
-n 1 j‘%‘” 1 1 1" j'%‘”
X,=X"=>X,=e " B =| [Il+—+—| -e *" (24c)
P &

Formulas for the transfer function poles are dependent upon the approximation order, thus [5]:

for even approximation order

X, + X1 -B* V- o W=
Py(even) = AT B-B_ cos 2:v 1-7z + J-sin 2:v 1-7[ (24d)
2 2 2-n 2-n
for odd approximation order
X, +X* B-B™ v (v
== -<cos| —-7 |+ j-sin| —- 24e

~ 2
In case of the Chebyshev approximation, the poles of function ‘H (j -QX are always uniformly
located on an ellipse [5], having the primary half-axis and the secondary one:

for the primary half-axis

_p-l
a= B ZB (241)
for the secondary half-axis
-1
p=2*8 (249)



The second way is based on using the ellipse half-axes, see Eq. (24f) and Eqg. (249):
. . (2-u-1 . 2-u-1
pﬂ:aﬂ+j-,8ﬂ:—a-sm( o -72')+j-b-COS[ o 72') (24h)

3.2.3 Transfer function

A form of formulas for calculating the poles of the NLP’s transfer function is also dependent on
the approximation order [5]:

for even approximation order
~ 1 1

H NLP(even)( p) = Z "m=n/2 (258.)
[125"*-(p?-2-a,-p+a?+p2)
=1
for odd approximation order
~ 1 1

H NLP(odd)( p) = (25h)

. "m=(n-1)2
2 (p+a) sz'm'(pz—Z'%'erafﬂfﬂj)

=l

3.2.4 Characteristic equation

A form of formulas for calculating the NLP’s characteristic equation is also dependent on the
approximation order [5]:

for even approximation order
m=n/2 _ m=n/2
qo(even 1_[22”“1 {p +COS (22;1 L ﬂ H22m1 [p +Q7 ] (26a)
for odd approximation order

" 2 o 2-u-1 g 2
¢7(odd H 277 p +COS( on j=|0 H2 [p + Q) ] (26b)

=1

3.2.5 Group delay

Because it is quite difficult to measure phase delay r¢(Q), group delay 7 (Q) is preferred in
practical use. Group delay is defined as a negative first derivative of frequency-phase characteristic

#(Q), thus [5]:
(©@)=——4(0) @72

Generally, if group delay is constant (it is desired), then frequency-phase characteristic of an
ideal filter is linearly dependent upon frequency; only FIR filters are able to satisfy this idea.

In this case, we consider analogue filter and normalized frequency. Non-constant group delay in
frequency domain influences step response in time domain. In case of the Chebyshev approximation,
there are two ways, how to approximate this group delay. The first way is based on formula, which
satisfies forms of the Chebyshev polynomials, and mentioned parameters, such as approximation
order, ellipse-based placement of the transfer function’s poles, parameters of the standard tolerance
scheme, and form of the characteristic equation, thus [5]:

7,(Q)= ! ~ mzznjl T;n(©) -sinh[(z ‘n-2-m-1)- arccos( B +ZB 71 ﬂ (27b)

2 T2 .
1+ THQ) & gz_sin(22m+1_”j




The second way is general (i. e. independent upon an approximate type for other analogue
filters) and based on the feature of natural logarithm derivative [5]:

£ 0)= )= -el o G @0

4 Practical examples

4.1 Analogue normalized low-pass (NLP) filter
Let us consider these values of normalized radial frequencies and the primary parameters, thus:
for the primary parameters
a, =1dB] a, =20[dB] (28a)
for normalized radial frequencies
Q,=1-] Q,=215-] (28b)

Values of other parameters are as follows:
£=+10""" -1 =+/10°" —1 = 0,508847139 = 0,5088 (28c)

and

Q
k=—2= L =0,465116279 = 0,4651 (28d)
Q. 215

S y

and

107 -1 y10° -1
1 \/100,1-a5 1 \/100,120 1

and (approximation order, we must round n to the nearest higher integer value)

argcosh £ argcosh 1
ki ) 01035

Q 1
—P | argcosh] ———
argcosh( ” j g (0,4651)

Result of Eqg. (28f) shows the approximation order is odd. Now, we must consider all the n -
dependent formulas for odd approximation order only, and we must recalculate these parameters for
new integer value of n, too:

1 1

k —0,103483852 = 0,1035 (28¢)

n> ~21141=n=3 (28f)

k, = = =0,030026874 = 0,0300 28
' cosh[n-argcosh(Q, )] cosh[3-argcosh(2,15)] (289
and
2 2
a, =10-log l-i-g—2 =10-log l+m = 24,59664076 = 24,5966 (28h)
K 0,030026874

and (number of extrema, values of extrema in pass band)

o odd 1
Qo,,=cos(22” 1.7rj: n-1E,‘:Qm=cos(zzlgl-zr}=cos[%j—§(28ch)

‘n H 2 5

Values of the ellipse parameters are as follows:

for the primary half-axis



a= 1 ‘/1+i2 +l 1 ‘/1+i2 +1 =0,494170604 = 0,4942 (28i)
2 e° ¢ 2 e° ¢

for the secondary half-axis

=

1
n

b=t e D I e L ) 1115430189 211154 (28))
2 et & 2 et €

Poles of transfer function are as follows:
for the first pole

P, = —a-sin(z'zlgl : 7;} +j -cos(z';;l-z) ~ —0,2471+ j-0,9660 (28K)

for the second pole

. (2-2-1 : 2-2-1 .
P2 :—a-sm[ >3 ~7zj+]-cos( >3 -nj;—0,4942+1-0:—0,4942 (28I)
for the third pole
P = —a-sin(2'23;1~nj+ j -cos(z';’;l-ﬂj ~—0,2471— j-0,9660 (28m)

In MATLAB, we can create some algorithm, which calculates these poles, based on Eq. (28K),
Eq. (28l), and Eg. (28m). The MATLAB code can be written like this:

0.5*(Clenl - Clen2)
= 0.5*(Clenl + Clen2)

T 9
|

for mikro = 1:n

PolyVLevePolorovine(mikro) = - a*sin((2*mikro - 1)*pi/(2*n)) +
i*b*cos((2*mikro - 1)*pi/(2*n));

PolyVPravePolorovine(mikro) = a*sin((2*mikro - 1)*pi/(2*n)) +
i*b*cos((2*mikro - 1)*pi/(2*n));

end

PolyVLevePolorovine(1l:n)
PolyVPravePolorovine(1:n)




Normovana dolni propust - rozlozeni polu prenosove funkce na elipse
1.5

1 /e

7

Im[H(Q)]

o=
—8-
~_ |
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Figure 3: Normalized low-pass filter — elliptic placement of three poles of the transfer function
H e (p); left half-plane of the normalized complex area

Transfer function is as follows, see Eq. (25b):

A

- H,(p) 0,4913

H _ =— = = 28n
st (P) H,(p)-H,(p) ~ p*+09883. p? +1,2384. p+0,4913 (280
and (normalized frequency-magnitude characteristic)
A . 0,4913
H NLP(n=3)(p =] QX = (280)

J0° -15001- Q* +0,5625- Q7 +0,2414

and (normalized frequency-phase characteristic)

0°-1,2384-Q
(Q)=ar ’ =
Puro-s () 9{0,4913 ~0,9883- 0’ }

In MATLAB code, Eqg. (25b) can be written like this:

first
quadrant

3 —_— .
_areta] @ ~12384-0 | 23
0,4913-0,9883- Q

m=(n - 1)/2;
HO = 1./(epsilonp*2~(2*m));

CitatelPrenosu = HO;

for i = 1:m

JmenovatelPrenosu = conv([1 a], prod([1l, -2*real(PolyVLevePolorovine(i)),
(real (PolyVLevePolorovine(i))) -"2+(imag(PolyVLevePolorovine(i)))-~2], m));

Omega0 = cos((2*i - 1)*pi/(2*n));
Rovnice = conv([(1.-/(epsilonp*H0)) 0], prod([1 O (OmegalO(i))-"~2], m));
end

Prenos = tf(CitatelPrenosu, JmenovatelPrenosu)
CharakteristickaRovnice = tf(Rovnice, [0 1])




Normovana dolni propust - modulova charakteristika pri Cebysevove aproximaci3. radu
1

\/ IH, ()| - analyticky wpocet
0.9k H

|H2(jQ)| - funkce cheblap(n, Rp)
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Figure 4a: Normalized low-pass filter — normalized frequency-magnitude characteristics for
I:|l(j ~QX (obtained analytically) and ‘I—A| 2(j ~Q)( (obtained by implemented MATLAB function of

cheblap(n, Rp)); the Cartesian coordinates

Due to MATLAB possibilities and features, it is possible to plot not only normalized frequency-
magnitude characteristic, but also other characteristics (e. g. real part of transfer function, imaginary
part of transfer function, phase characteristic, group delay) in 3D graphs. For this transfer function
form, mentioned in Eq. (28n), it is also possible to plot this function in 3D graph.
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Figure 4b: Normalized low-pass filter — 3D graph of normalized frequency-magnitude characteristic
(three poles of the transfer function are shown in the left part half-plane of the normalized complex
area); the Cartesian coordinates

MATLAB code, where the normalized frequency-phase characteristic (unwrap mode) is plotted
in 3D graph, is as follows:



n = 3;
Azimut = 60;

Elevace = 20;

BO = 0.4913;
AO = BO; Al = 1.2384;
A2 = 0.9883; A3 = 1;

dSigma = 0.01; dOmega = dSigma;

[Delta, Sigma] = meshgrid(-1:dSigma:0, -2:dOmega:2);

s = Delta + j*Sigma;

FunkceZPrenos = BO./(A3*s.”"3 + A2*s."2 + Al*s + AQ);

FunkcezSkupinove = - real((-3*s.22 - 1.9766*s - 1.2384)./(s-"3 +
0.9883*s.72 + 1.2384*s + 0.4913));

imag(FunkceZPrenos);

Imag
real (FunkceZPrenos);

Real

mesh(Delta, Sigma, unwrap(atan2(lmag, Real)));

Characteristic function (based on characteristic equation) is as follows, see Eg. (26b):
Poa(P = 1-Q) =T (p=J-Q)= I To(Q)=4-(j-QF -3-(j°-Q)=4-p*+3-p (280
Group delay is as follows (in radians), see Eq. (27¢):
1 d ~/. 0,9883-Q* —0,2500-Q? +0,6084
7,(Q)=-Re{————H(j- Q)= — . .
H (J -Q) dQ Q" -15001-Q" +0,5625-Q° +0,2414
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Figure 5: Normalized low-pass filter — normalized frequency-group delay characteristics for rgl(Q)

(obtained by H,(j-€)) and 7, () (obtained by H, (j-(2)); the Cartesian coordinates



Using MATLAB, we created this own algorithm, based on self-developed formulas. Transfer

functions H,(j-Q) (Hs in code) and H,(j-Q) (H1s in code) are the input parameters of this
algorithm.

Hs = tf(NumHs, DenHs)

Hls = tf(NumH1ls, DenH1s)

BO1 = NumHs(length(NumHs)); AO1 = DenHs(length(DenHs));

A1l = DenHs(length(DenHs) - 1); A21 = DenHs(length(DenHs) - 2);
A31 = DenHs(length(DenHs) - 3);

xOmegal = AO1 - A21*Omega-~2; dxOmegal = - 2*A21*Omega;

yOmegal = All1*Omega - A31*Omega.”3; dyOmegal = All - 3*A31*Omega.”2;
NumTaugl = dyOmegal.*xOmegal - dxOmegal.*yOmegal;

DenTaugl = xOmegal.”2 + yOmegal."2;

Taugl = NumTaugl./DenTaugl;

BO2
Al2
A32

NumH1s(length(NumH1s)); A02 = DenHls(length(DenH1s));
DenHls(length(DenHls) - 1); A22 = DenHls(length(DenHls) - 2);
DenHls(length(DenHls) - 3);

xOmega2 AO2 - A22*0Omega-”~2; dxOmega2 = - 2*A22*0Omega;
Al2*0Omega - A32*Omega.”3; dyOmega2 = Al2 - 3*A32*Omega.”2;

dyOmega2.*x0mega2 - dxOmega2.*yOmega2;

yOmega2

NumTaug2
DenTaug2 = xOmega2.”2 + yOmega2."2;
Taug2 = NumTaug2./DenTaug2;

4.2 Analogue un-normalized filters

Due to MATLAB functions, implemented in Signal Processing Toolbox, it is possible to
convert the normalized low-pass (NLP) filter into these un-normalized analogue filters, whereas [6]

[7]:

o normalizedlow-pass (NLP) filter cheblap(n, Rp),
o low-pass (LP) filter Ip2lp(b, a, Wo),
e high-pass (HP) filter Ip2hp(b, a, Wo)
e band-pass (BP) filter Ip2bp(b, a, Wo, Bw),
e band-stop (BS) filter Ip2bs(b, a, Wo, Bw).
Where n approximation order n,
Rp  pass-band ripple R, =107"%%
b nominator of the NLP’s transfer function éNLP(p),
a denominator of the NLP’s transfer function ANLP(p),
w
Wo  cut-off radial frequency w, =, :Q—p,

Bw  radial frequency bandwidth B,=2-z-(f, - f,).



@

Figure 6a: Un-normalized low-pass filter — radial frequency-magnitude characteristic

p

Naturally, these MATLAB functions are based on frequency transformation formulas:

for low-pass filter

0, =, Q, =0y, @, =00y )
for high-pass filter
4 O a4 O
wp:a’o'Qplz_O:a’o a’s:a)o'Qslzg_O
p s
for band-pass filter [9]
2 2
W) — @ _
Qp:‘ 0 pd‘ B:a)OH COOL:fOH_fOL
@, - B 2.
for band-stop filter [9]
o, B W,y — @
Q,= 2p_ ;7 B= OHz. = fop = fo
‘a’o a)pd‘ 4

For example, let wus consider
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MATLAB code is as follows:

25

X 104

(29a)

(29b)

(29¢)

(29d)

@, =2000-zlrad -s*| (for LP and HP),
’ :1500-7z[rad -s’l], and o, = 2500-7r[rad -s’l] (for BP and BS).
magnitude characteristics of LP filter and BP filter are as follows:

Radial frequency-

HALP(J.'CU)(;

[NumHDPs, DenHDPs] = Ip2lp(NumHs, DenHs, omegaO);
HDPs =

tF(NumHDPs, DenHDPs)

[HDP, omegaDP] = freqs(NumHDPs, DenHDPs, omega);

plot(omegaDP, abs(HDP))
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Figure 6b: Un-normalized band-pass filter — radial frequency-magnitude characteristic

Hegp (J : C‘)X ;
the Cartesian coordinates

MATLAB code is as follows:

[NumHPPs, DenHPPs] = Ip2bp(NumHs, DenHs, omegaO, Bomega);
HPPs = tf(NumHPPs, DenHPPs)

[HPP, omegaPP] = freqs(NumHPPs, DenHPPs, omega);
plot(omegaPP, abs(HPP))

4.3 Digital (I1R) un-normalized filters
Transfer function of IIR filter (IIR — Infinite Impulse Response) is given by this formula, thus

[5]:

= == (30a)

Designing IR filters is based on finding the coefficients of nominator é(z ‘1) and denominator

A(z‘l) of the transfer function, or finding zeros of é(z‘l) or poles of A(z'l) to satisfy the
requirements of tolerance scheme [5]. This design process is related to:

guadrature of magnitude characteristic

H(z)-A(z?)= |z =exp(j- o, )= ‘I—] (z=exp(j- o, )XZ (30b)
group delay
z d , z d g
7, (0)= Re{m.a A(z)—%.a B(Z)}z-exp(,-wd) (30c)

Traditional approach is based on acceptance of analogue filters’ approximations, because some
methodology of NLP approximation has been managed yet. This paper demonstrates this idea.



During designing IR filter using bilinear (Tustin) transformation, we consider the NLP
approximation given by Eq. (28n) and use these approaches, thus [5]:

e the first approach — using frequency transformation, we obtain some analogue transfer
functions; via AD transformation, we obtain some digital transfer function,

e the second approach — using AD transformation, we obtain some digital transfer
functions; via frequency transformation, we obtain desired digital transfer function.

AD transformation must satisfy these conditions [5]:

¢ the first condition — stable analogue filter must be converted into stable digital filter,
e the second condition — fundamental frequency features of analogue filter must be kept
in digital filter.

In MATLAB, there are two ways, how to approach the bilinear transformation, thus:

e bilinear(num, den, ¥s) — prewarped mode is not used to indicate “match”
frequency, where num is a nominator of transfer function, den is a denominator of
transfer function, and Fs is sampling frequency [8]:

N N _ o1
H@%qqszzﬁyz_ézgule
z+1 T, 14z
and
w, =2-arctg] -2 |=2.arctg @, Ty (30e)
‘ 2. f, 2

e Dbilinear(num, den, fs, Tp) - Fp parameter specifies prewarping, which
indicates “match” frequency, for which the frequency responses (before and after
mapping) match exactly; this parameter value is identical with edge of pass-band of an
analogue filter [8]:

H"(Z)_H" 5= 2.7 ‘Z—l_ 2.7 .1—271
[fp ] z+1 to(f, T,-x) 1+2°
and
f @
ag-tg(#3~ﬂ} ag-tg(Zp-T;J
o, =2-arctg —————~= | =2-arctg (300)
2-7- f, o,

For example, let us consider @, =, = 2000-7r[rad -S’l] and o, =8000~7r[rad -s‘l].
Frequency ratio equals to:

@, 20007 1

° o, 8000-7 4

S

MATLAB codes, focused on this problem, are as follows:

for analogue NLP filter (s-plane)

(30d)

(30)

= (30h)

[NumHNDPs, DenHNDPs] = chebyl(n, ap, Omegap, "low", "s");
[HNDPs, omegaNDPs] = freqs(NumHNDPs, DenHNDPS) ;

for digital NLP filter (z-plane)



[NumHNDPz, DenHNDPz] = chebyl(n,ap,2*atan(Omegap/(2*fvz))/pi, “low", "z%);
[HNDPz, omegaNDPz] = freqz(NumHNDPz, DenHNDPZ);

TUT UTyTtar TOW=pdss TITET {Prevwdr Py 1mout 15 TTUT LUTTSTUTTTU )

[NumHDP1z, DenHDP1z] = chebyl(n,ap,2*atan(omegaO0*Omegap/(2*fvz))/pi, "“low",
IZI);

[HDP1z, omegaDPl1z] = freqz(NumHDPl1z, DenHDP1Zz);

or (equivalent code)

[NumHDP2z, DenHDP2z] = bilinear(NumHDPs, DenHDPs, fvz);
[HDP2z, omegaDP2z] = freqz(NumHDP2z, DenHDP2Zz);

for digital low-pass filter (use of bilinear transformation, prewarping mode is considered)

[NumHDP3z, DenHDP3z] = chebyl(n, ap,
2*atan(omega0*Omegap*tan(pi*f0/fvz)/(2*pi*f0))/pi, “"low™, "z%);

[HDP3z, omegaDP3z] = freqz(NumHDP3z, DenHDP3Zz);

or (equivalent code)

[NumHDP4z, DenHDP4z] = bilinear(NumHDPs, DenHDPs, fvz, f0);
[HDP4z, omegaDP4z] = freqz(NumHDP4z, DenHDP4Zz);

Fig. 7 shows normalized frequency-magnitude characteristics of designed digital low-pass filter.
For detailed analysis of designed IIR filters, we can use a MATLAB tool called Filter Visualization
Tool (fvtool).
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5 Conclusions

This paper deals with using mathematical background, focused on the Chebyshev polynomials,
selected MATLAB functions from Signal Processing Toolbox, and other tools (e. g. Filter Visulization
Tool) for designing the first-order analogue Chebyshev filters and IIR Chebyshev filters. Because this
paper is centred on mathematic viewpoint, there are a lot of fundamental (maybe essential) formulas in
the first part of this paper. Well, we try to relate the Chebyshev polynomials to other polynomials (e.
0. Jacobi, Gegenbauer) and formulas (Euler, de Moivre, Rodrigues), whereas most features of the
Chebyshev polynomials are mentioned (definition, representations, recurrence relation, roots and
extrema etc.).

The second part is focused on designing the first-order Chebyshev filters in p-plane (hormalized
analogue low-pass filter), s-plane (un-normalized analogue filters), and z-plane (IIR filters; normalized
digital low-pass filter and un-normalized digital filters). Designing in p-plane is essential, it is this
paper’s kernel, for which we also consider some mathematical apparatus (fundamental approximation
order, tolerance scheme, roots and extrema, normalized frequency characteristics, characteristic
equation, group delay etc.). All these formulas are used to solve practical examples, based on
approximation of the normalized low-pass filter. These examples include the formulas, 2D graphs, 3D
graphs, and fragments of corresponding MATLAB code. Due to MATLAB&Simulink possibilities, it
is possible to implement this approach, based on [5], not only in Simulink, but also in the field of FIR
filters.
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