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Abstract 

This paper deals with using MATLAB function and tools for designing first-order 
analogue Chebysev filters and IIR Chebysev filters. The first part of this paper is 
focused on a design of analogue filter via Chebyshev approximation approach, i. e. 
features and mathematical background of this iso-extremal approximation, 
approximation of normalized low-pass (NLP, also NDP in Czech) filter, and 
mathematical formulas for calculating fundamental parameters of NLP, such as 
constructing a tolerance scheme, Chebyshev approximation order, poles of transfer 
function, characteristic equation, and group delay. Due to frequency transformation 
formulas implemented in MATLAB, un-normalized forms of frequency functions for 
low-pass (LP, also DP in Czech), high-pass (HP, also the same in Czech), band-pass 
(BP, also PP in Czech), and band-stop (BS, also PZ in Czech) analogue filters are also 
available. The second part of this paper describes designing the first-order IIR 
Chebyshev filter via implemented MATLAB functions and Filter Visualization Tool 
(FVT), whereas conversion from an analogue form into a digital form is done and 
discussed for bilinear (Tustin) transformation only. Naturally, both design 
approaches are illustrated in form of some practical examples. 

1 Introduction to Chebyshev polynomials 
Chebyshev polynomials are some sequence of classic orthogonal polynomials, which are related 

to famous de Moivre’s formula and which can be defined recursively. We usually distinguish between 
two kinds of Chebyshev polynomials, thus [1]: 

• the first kind ( )xTn , 
• the second kind ( )xU n . 

These Chebyshev polynomials are polynomials of nth degree and their sequence composes a 
polynomial sequence. In practical use, the Chebyshev polynomials are important in approximation 
theory, whereas the roots of the first kind of Chebyshev polynomials (so-called Chebyshev nodes) are 
used in polynomial interpolation [1]. This paper is focused on describing mathematical background of 
the first kind only. 

The Chebyshev polynomials are also the solutions of these ordinary differential equations 
(ODE), thus [1]: 

for the first kind 
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where ( ) ( )xTyxf n=≡   solution of this Chebyshev ODE. 

for the second kind 
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where ( ) ( )xUyxf n=≡   solution of this Chebyshev ODE. 



These second-order ODEs are special cases of Sturm-Liouville differential equation [2], because 
it is possible to transform Eq. (1) and Eq. (2) into these forms: 

for the first kind 
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where ( ) ( )xTyxf n=≡   solution of this Chebyshev ODE. 

for the second kind 
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where ( ) ( )xUyxf n=≡   solution of this Chebyshev ODE. 

2 Mathematical background 
This part is centred on detail description of mathematical background, related to the Chebyshev 

polynomials – e g. definitions, orthogonality, representations, generating functions, recurrence 
relation, roots, and extrema. 

2.1 Orthogonality 
Generally, both kinds of Chebyshev polynomials are orthogonal; in case of the first kind, we 

assume: 

• interval  ( )1,1 +−∈x , 

• weight function ( ) ( ) 2
1

21 −
−= xxw . 

Based on Sturm-Liouville theory and form of an orthonormal basis in the Hilbert space, we 
assume this formula [1] [4]: 
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2.2 Representation 

2.2.1 Polynomial representation 
The first kind of Chebyshev polynomials can be defined and represented in these several forms. 

Because the Chebyshev polynomials are special cases of the ultraspherical (or Gegenbauer) 
polynomials, which themselves are special cases of Jacobi (or hypergeometric) polynomials [1] [4], 
because Gegenbauer differential equation has this form: 
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Especially, if 0=α , then we get the form of Eq. (1); in case of 1=α , we get the form of Eq. 
(2). Following formulas are focused on the case of 0=α . The solution of Eq. (6) is given by 
Gegenbauer polynomials ( ) ( )xCn

α [2], and Jacobi polynomials ( ) ( )xP ba
n

, [3], when 5,0−== ba . 
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where 
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and [2] 

 ( ) ( ) ( )
( ) ( ) ( )

[ ] ( ) ( )
( ) ( ) ( )

[ ]

∑∑
=

⋅−

=

⋅− ⋅⋅
⋅⋅−
−Γ⋅−

=⋅⋅
⋅⋅−
−−⋅−

=
2

0

2
2

0

20 2
!!2

12
!!2

!11 n

m

mn
mn

m

mn
m

n x
mmn
mnx

mmn
mnxC  (8b) 

Generalized form of Eq. (8b) is given by Eq. (9a), leading to Rodrigues formula, thus [2]: 
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and (Rodrigues formula) [2] 
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For the Chebyshev polynomials of the first kind, the Rodrigues formula has this form [4]: 
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and 
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The result formulas in Eq. (7) and Eq. (10b) are the same. 

For each non-negative integer n , both kinds of Chebyshev polynomials are polynomials of nth 
degree. They are even or odd function of x , whereas n  is even or odd. In case of the first kind, we 
assume [1]: 
 ( ) ( ) ( )( )xTxT n

n
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Naturally, other polynomial sequences like Lucas polynomials, Dickson polynomials, or 
Fibonacci polynomials are also related to both kinds of Chebyshev polynomials. [1] 

2.2.2 Integral representation 
In case of an integral representation of the Chebyshev polynomials of the first kind, we assume 

this formula [1]: 
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where i   imaginary unit, 
  C   arbitrary Jordan curve in the form of some integration area, 
  xz =   inner point of the integration area, 
  1±=z   outer points of the integration area. 

2.2.3 Trigonometric representation 
In case of trigonometric representation of the Chebyshev polynomials of the first kind, let us 

consider these formulas, based on Euler’s formula and de Moivre’s formula: 

for cosine function 
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for hyperbolic cosine function 
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Eq. (13b) and Eq. (14b) show, different approaches to defining the Chebyshev polynomials lead 
to different explicit formulas – it is very useful for designing the Chebyshev filter not only in pass 
band via Eq. (13b), but also in stop band via Eq. (14b). 

The Chebyshev polynomials are also the solutions of Pell equation, which is any Diophantine 
equation having this form [6]: 
 122 =⋅− ynx  (15a) 

If we consider features of Euler’s formula, de Moivre’s formula, and Eq. (13a), then we can 
write Eq. (15a) in this form, thus: 
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If we consider ( )[ ]Φ= cosxTn  and ( )[ ] ( ) ( )ΦΦ⋅=Φ=− sinsincos1 nxUn , then we get Euler’s 
formula: 
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Eq. (15g) is directly related to Eq. (7) and Eq. (8b). 

2.3 Generating functions 
Based on the form of Eq. (15f), it is possible to define so-called exponential generating function 

for ( )xTn  in this form [1]: 
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Generating functions for ( )xTn  have these forms, thus [1] [4]: 
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and 
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for 1≤x and 1<t  

2.4 Recurrence relation 
Both kinds of Chebyshev polynomials are defined by the same recurrence relation [4]. Let us 

consider: 
 ( ) ( ) ( ){ }xUxTxQ nnn ,≡  (18a) 

then 
 ( ) ( ) ( )xQxQxxQ nnn 11 2 −+ −⋅⋅=  (18b) 

where ( ) ( ) 10cos0 =Φ⋅== xTn     zero-order Ch. polynomial, 
  ( ) ( ) ( ) xxTn ⇒Φ=Φ⋅⇒= cos1cos1    first-order Ch. polynomial, 

  ( ) ( ) 122cos 2
2 −⋅⇒Φ⋅⇒= xxTn    second-order Ch. polynomial, 

  ( ) ( ) xxxTn ⋅−⋅⇒Φ⋅⇒= 343cos 3
3    third-order Ch. polynomial, 

  ( ) ( ) 1884cos 24
4 +⋅−⋅⇒Φ⋅⇒= xxxTn   fourth-order Ch. polynomial. 

Eq. (18b) is also very useful, because it is closely related to characteristic equation and 
characteristic function of designed Chebyshev filter. 

2.5 Roots and extrema 
The Chebyshev polynomial of the nth order has n different roots (Chebyshev nodes) in the 

closed interval 1,1 +− . These roots are used as polynomial interpolation nodes [1], whereas 
approach is based on solving this goniometrical equation: 
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Generally, zeros of ( )xTn  occur, when: 
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where for even n  2,,2,1 nk = , 
for odd n  ( ) 21,,2,1 −= nk  . 

Generally, extrema of ( )xTn  occur, when: 
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Eq. (19b) is also useful for calculating the zeros of the characteristic equation of design 
Chebyshev filter. 

3 Designing the first-order analogue Chebyshev filter 
Designing the first-order analogue Chebyshev filter is based on the Chebyshev approximation, 

which uses so-called first Chebyshev approximation method. In this case, we find some polynomial 
solution in open interval ( )1,1 +−=Ω . This solution has to approximate zero as best and with regular 



divergence [5]. We assume some approximate differential equation; in this case it is the Pell equation, 
mentioned in Eq. (15b) and converted into this form, thus: 
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where n   an order of the first kind Chebyshev polynomials, or an approx. order. 

3.1 Approximation of normalized low-pass filter 
This approximation is based on the first-order Chebyshev polynomials and focused on the 

normalized low-pass (NLP) filter only. Due to frequency normalization, it is possible to convert ideal 
LP’s requirements into a NLP prototype. Naturally, it is also possible to transform requirements for 
other types of analogue filters (LP, HP, BP, and BS) into NLP filter, namely via other frequency 
formulas and/or using implemented MATLAB functions. The standard results of this approximation 
approach are as follows, thus: 

• transfer function, 
• characteristic equation, 
• group delay. 

There are defined and shown some ideal requirements for frequency-magnitude characteristic of 
an ideal low-pass (LP) filter, see the right part of Fig. (1). Radial frequency pω  is a cut-off radial 
frequency of filter pass-band, where magnitude values at positive radial frequencies are given by this 
formula, thus [5]: 
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Analogously to ideal low-pass filter, there are defined and shown some ideal requirements for 
normalized frequency-magnitude characteristic of an ideal normalized low-pass (NLP) filter, see the 
left part of Fig. (1). Normalized radial frequency pΩ  , naturally equalled to 1, is a normalized cut-off 
radial frequency of normalized filter pass-band, where magnitude values at positive normalized radial 
frequencies are given by this formula, thus [5]: 
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In case of NLP filter, we consider some scaling in the form of frequency normalization, when 
we create so-called normalized complex area: 
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where s   un-normalized Laplace operator, 
  p   normalized Laplace operator, 
  Σ   real axis of normalized complex area, 
  Ω   imaginary axis of normalized complex area. 

  
Figure 1: Ideal frequency-magnitude characteristics – normalized low-pass filter (NLP, left) and (un-

normalized) low-pass filter (LP, right) 



Because frequency-magnitude characteristics of an ideal NLP filter need not meet all the 
feasibility requirements [5], it is required to consider so-called tolerance scheme, or standard tolerance 
scheme (see Fig.2). 

  
Figure 2: Normalized low-pass filter – tolerance scheme (left; including the primary parameters) and 

standard tolerance scheme (right; including the secondary parameters) 

Some approximating rational function can approximate magnitude (equalled to 1) in band-pass, 
whereas certain dB-based error value ( pa ) could be detected. If we approximate zero-magnitude in 
transitional band, corresponding characteristic must be continuous. Selectivity of designed filter is 
given by the transitional band, which is limited by dimensionless frequency of band-stop ( sΩ ) and 
corresponding approximation error value ( sa ) in this band. Parameters included in tolerance scheme 
represent so-called primary parameters related to the requirements for solving the problem of NLP’s 
synthesis. Fortunately, the tolerance scheme’s requirements could be given by so-called secondary 
parameters related to the standard tolerance scheme [5]. There are corresponding formulas between the 
tolerance scheme and the standard tolerance one, see corresponding magnitude levels shown in Fig. 2. 

For band-pass, this identity is available, thus: 
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For band-stop, this identity is available, thus: 
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For both bands, we consider this ratio formula: 
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The Chebyshev approximation is the most important iso-extremal approximation, providing 
some oscillating characteristics either in band-pass (the first kind), in band-stop (the second kind), or 
in both bands. The iso-extermal approximations satisfy the requirements at the lowest order of 
approximating function. [5] 

At the Chebyshev approximation of the NLP filter, the characteristic function, defining iso-
extremal characteristic of approximation error in band-pass, is given by the Chebyshev polynomials. 

3.2 Formulas for the NLP filter approximation 
Following formulas will be used in practical example, so they are mentioned here. 



3.2.1 Approximation order 
The approximation order is one of the most important parameters, because other formulas are 

dependent upon its value, which is given by this formula [5]: 
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Eq. (23) does not guarantee, that n will be really an integer value (even or odd), so it is required 
to recalculate the values of sa and 1k , see Eq. (22b), or the values of sΩ and k , see Eq. (22c). 

3.2.2 Poles of transfer function 
There are two ways, how to calculate the poles of NLP’s transfer function. The first way is 

based on this equation (generalized form) [5]: 
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and 
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Formulas for the transfer function poles are dependent upon the approximation order, thus [5]: 

for even approximation order 
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for odd approximation order 
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In case of the Chebyshev approximation, the poles of function ( ) 2ˆ Ω⋅jH are always uniformly 

located on an ellipse [5], having the primary half-axis and the secondary one: 

for the primary half-axis 
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The second way is based on using the ellipse half-axes, see Eq. (24f) and Eq. (24g): 

 





 ⋅

⋅
−⋅

⋅⋅+





 ⋅

⋅
−⋅

⋅−=⋅+= πµπµβα µµµ n
bj

n
ajp

2
12cos

2
12sin  (24h) 

3.2.3 Transfer function 
A form of formulas for calculating the poles of the NLP’s transfer function is also dependent on 

the approximation order [5]: 

for even approximation order 
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for odd approximation order 
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3.2.4 Characteristic equation 
A form of formulas for calculating the NLP’s characteristic equation is also dependent on the 

approximation order [5]: 

for even approximation order 
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for odd approximation order 
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3.2.5 Group delay 

Because it is quite difficult to measure phase delay ( )Ωφτ , group delay ( )Ωgτ  is preferred in 
practical use. Group delay is defined as a negative first derivative of frequency-phase characteristic 
( )Ωφ , thus [5]: 
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Generally, if group delay is constant (it is desired), then frequency-phase characteristic of an 
ideal filter is linearly dependent upon frequency; only FIR filters are able to satisfy this idea. 

In this case, we consider analogue filter and normalized frequency. Non-constant group delay in 
frequency domain influences step response in time domain. In case of the Chebyshev approximation, 
there are two ways, how to approximate this group delay. The first way is based on formula, which 
satisfies forms of the Chebyshev polynomials, and mentioned parameters, such as approximation 
order, ellipse-based placement of the transfer function’s poles, parameters of the standard tolerance 
scheme, and form of the characteristic equation, thus [5]: 
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The second way is general (i. e. independent upon an approximate type for other analogue 
filters) and based on the feature of natural logarithm derivative [5]: 
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4 Practical examples 
4.1 Analogue normalized low-pass (NLP) filter 

Let us consider these values of normalized radial frequencies and the primary parameters, thus: 

for the primary parameters 
 [ ] [ ]dBadBa sp 201 ==  (28a) 

for normalized radial frequencies 
 [ ] [ ]−=Ω−=Ω 15,21 sp  (28b) 

Values of other parameters are as follows: 

 5088,0508847139,0110110 11,01,0 ≅=−=−= ⋅⋅ paε  (28c) 

and 

 4651,0465116279,0
15,2
1

≅==
Ω

Ω
=

s

pk  (28d) 

and 

 1035,0103483852,0
110
110

110
110

201,0

11,0

1,0

1,0

1
5

≅=
−

−
=

−

−
=

⋅

⋅

⋅

⋅

a

ap

k  (28e) 

and (approximation order, we must round n to the nearest higher integer value) 
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Result of Eq. (28f) shows the approximation order is odd. Now, we must consider all the n -
dependent formulas for odd approximation order only, and we must recalculate these parameters for 
new integer value of n , too: 
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and (number of extrema, values of extrema in pass band) 
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Values of the ellipse parameters are as follows: 

for the primary half-axis 
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for the secondary half-axis 
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Poles of transfer function are as follows: 

for the first pole 
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for the second pole 
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for the third pole 
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In MATLAB, we can create some algorithm, which calculates these poles, based on Eq. (28k), 
Eq. (28l), and Eq. (28m). The MATLAB code can be written like this: 

 

a = 0.5*(Clen1 - Clen2) 

b = 0.5*(Clen1 + Clen2) 

 

for mikro = 1:n 

PolyVLevePolorovine(mikro) = - a*sin((2*mikro - 1)*pi/(2*n)) + 
i*b*cos((2*mikro - 1)*pi/(2*n)); 

PolyVPravePolorovine(mikro) = a*sin((2*mikro - 1)*pi/(2*n)) + 
i*b*cos((2*mikro - 1)*pi/(2*n)); 

end 

 

PolyVLevePolorovine(1:n) 

PolyVPravePolorovine(1:n) 
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Figure 3: Normalized low-pass filter – elliptic placement of three poles of the transfer function 

( )pH NLP
ˆ ; left half-plane of the normalized complex area 

Transfer function is as follows, see Eq. (25b): 
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and (normalized frequency-magnitude characteristic) 
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and (normalized frequency-phase characteristic) 
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In MATLAB code, Eq. (25b) can be written like this: 

 

m = (n - 1)/2; 

H0 = 1./(epsilonp*2^(2*m)); 

CitatelPrenosu = H0; 

 

for i = 1:m 

JmenovatelPrenosu = conv([1 a], prod([1, -2*real(PolyVLevePolorovine(i)), 
(real(PolyVLevePolorovine(i))).^2+(imag(PolyVLevePolorovine(i))).^2], m)); 

Omega0 = cos((2*i - 1)*pi/(2*n)); 

Rovnice = conv([(1./(epsilonp*H0)) 0], prod([1 0 (Omega0(i)).^2], m)); 

end 

 

Prenos = tf(CitatelPrenosu, JmenovatelPrenosu) 

CharakteristickaRovnice = tf(Rovnice, [0 1]) 
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Figure 4a: Normalized low-pass filter – normalized frequency-magnitude characteristics for 
( )Ω⋅jH1

ˆ (obtained analytically) and ( )Ω⋅jH 2
ˆ  (obtained by implemented MATLAB function of 

cheb1ap(n, Rp)); the Cartesian coordinates 

Due to MATLAB possibilities and features, it is possible to plot not only normalized frequency-
magnitude characteristic, but also other characteristics (e. g. real part of transfer function, imaginary 
part of transfer function, phase characteristic, group delay) in 3D graphs. For this transfer function 
form, mentioned in Eq. (28n), it is also possible to plot this function in 3D graph. 

 
Figure 4b: Normalized low-pass filter – 3D graph of normalized frequency-magnitude characteristic 
(three poles of the transfer function are shown in the left part half-plane of the normalized complex 

area); the Cartesian coordinates 

MATLAB code, where the normalized frequency-phase characteristic (unwrap mode) is plotted 
in 3D graph, is as follows: 



 
 

Characteristic function (based on characteristic equation) is as follows, see Eq. (26b): 
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Group delay is as follows (in radians), see Eq. (27c): 
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Figure 5: Normalized low-pass filter – normalized frequency-group delay characteristics for ( )Ω1gτ  

(obtained by ( )Ω⋅jH1
ˆ ) and ( )Ω2gτ  (obtained by ( )Ω⋅jH 2

ˆ ); the Cartesian coordinates 

n = 3; 

Azimut = 60; 

Elevace = 20; 

 

B0 = 0.4913; 

A0 = B0; A1 = 1.2384; 

A2 = 0.9883; A3 = 1; 

 

dSigma = 0.01; dOmega = dSigma; 

 

[Delta, Sigma] = meshgrid(-1:dSigma:0, -2:dOmega:2); 

s = Delta + j*Sigma; 

 

FunkceZPrenos = B0./(A3*s.^3 + A2*s.^2 + A1*s + A0); 

FunkceZSkupinove = - real((-3*s.^2 - 1.9766*s - 1.2384)./(s.^3 + 
0.9883*s.^2 + 1.2384*s + 0.4913)); 

Imag = imag(FunkceZPrenos); 

Real = real(FunkceZPrenos); 

 

mesh(Delta, Sigma, unwrap(atan2(Imag, Real))); 



Using MATLAB, we created this own algorithm, based on self-developed formulas. Transfer 
functions ( )Ω⋅jH1

ˆ  (Hs in code) and ( )Ω⋅jH 2
ˆ  (H1s in code) are the input parameters of this 

algorithm. 

 
4.2 Analogue un-normalized filters 

Due to MATLAB functions, implemented in Signal Processing Toolbox, it is possible to 
convert the normalized low-pass (NLP) filter into these un-normalized analogue filters, whereas [6] 
[7]: 

• normalizedlow-pass (NLP) filter  cheb1ap(n, Rp), 
• low-pass (LP) filter   lp2lp(b, a, Wo), 
• high-pass (HP) filter   lp2hp(b, a, Wo), 
• band-pass (BP) filter   lp2bp(b, a, Wo, Bw), 
• band-stop (BS) filter   lp2bs(b, a, Wo, Bw). 

Where n approximation order    n , 
  Rp pass-band ripple    pa

pR ⋅−= 05,010 , 

  b nominator of the NLP’s transfer function ( )pBNLP
ˆ , 

  a denominator of the NLP’s transfer function ( )pANLP
ˆ , 

  Wo cut-off radial frequency    
p

p
p Ω
==
ω

ωω0 , 

  Bw radial frequency bandwidth   ( )LH ffB −⋅⋅= πω 2 . 

Hs = tf(NumHs, DenHs) 

H1s = tf(NumH1s, DenH1s) 

 

B01 = NumHs(length(NumHs)); A01 = DenHs(length(DenHs)); 

A11 = DenHs(length(DenHs) - 1); A21 = DenHs(length(DenHs) - 2); 

A31 = DenHs(length(DenHs) - 3); 

 

xOmega1 = A01 - A21*Omega.^2; dxOmega1 = - 2*A21*Omega; 

yOmega1 = A11*Omega - A31*Omega.^3; dyOmega1 = A11 - 3*A31*Omega.^2; 

NumTaug1 = dyOmega1.*xOmega1 - dxOmega1.*yOmega1; 

DenTaug1 = xOmega1.^2 + yOmega1.^2; 

Taug1 = NumTaug1./DenTaug1; 

 

B02 = NumH1s(length(NumH1s)); A02 = DenH1s(length(DenH1s)); 

A12 = DenH1s(length(DenH1s) - 1); A22 = DenH1s(length(DenH1s) - 2); 

A32 = DenH1s(length(DenH1s) - 3); 

 

xOmega2 = A02 - A22*Omega.^2; dxOmega2 = - 2*A22*Omega; 

yOmega2 = A12*Omega - A32*Omega.^3; dyOmega2 = A12 - 3*A32*Omega.^2; 

NumTaug2 = dyOmega2.*xOmega2 - dxOmega2.*yOmega2; 

DenTaug2 = xOmega2.^2 + yOmega2.^2; 

Taug2 = NumTaug2./DenTaug2; 



Naturally, these MATLAB functions are based on frequency transformation formulas: 

for low-pass filter 
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for high-pass filter 
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for band-pass filter [9] 
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for band-stop filter [9] 
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For example, let us consider [ ]1
0 2000 −⋅⋅= sradπω  (for LP and HP), 

[ ]11500 −⋅⋅= sradpd πω , and [ ]12500 −⋅⋅= sradpl πω  (for BP and BS). Radial frequency-
magnitude characteristics of LP filter and BP filter are as follows: 
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Figure 6a: Un-normalized low-pass filter – radial frequency-magnitude characteristic ( )ω⋅jH LP
ˆ ; 

the Cartesian coordinates 

MATLAB code is as follows: 

 

[NumHDPs, DenHDPs] = lp2lp(NumHs, DenHs, omega0); 

HDPs = tf(NumHDPs, DenHDPs) 

 

[HDP, omegaDP] = freqs(NumHDPs, DenHDPs, omega); 

plot(omegaDP, abs(HDP)) 
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Figure 6b: Un-normalized band-pass filter – radial frequency-magnitude characteristic ( )ω⋅jH BP
ˆ ; 

the Cartesian coordinates 

MATLAB code is as follows: 

 

4.3 Digital (IIR) un-normalized filters 
Transfer function of IIR filter (IIR – Infinite Impulse Response) is given by this formula, thus 

[5]: 
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Designing IIR filters is based on finding the coefficients of nominator ( )1ˆ −zB  and denominator 

( )1ˆ −zA  of the transfer function, or finding zeros of ( )1ˆ −zB  or poles of ( )1ˆ −zA  to satisfy the 
requirements of tolerance scheme [5]. This design process is related to: 

quadrature of magnitude characteristic 
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group delay 
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Traditional approach is based on acceptance of analogue filters’ approximations, because some 
methodology of NLP approximation has been managed yet. This paper demonstrates this idea. 

[NumHPPs, DenHPPs] = lp2bp(NumHs, DenHs, omega0, Bomega); 

HPPs = tf(NumHPPs, DenHPPs) 

 

[HPP, omegaPP] = freqs(NumHPPs, DenHPPs, omega); 

plot(omegaPP, abs(HPP)) 



During designing IIR filter using bilinear (Tustin) transformation, we consider the NLP 
approximation given by Eq. (28n) and use these approaches, thus [5]: 

• the first approach – using frequency transformation, we obtain some analogue transfer 
functions; via AD transformation, we obtain some digital transfer function, 

• the second approach – using AD transformation, we obtain some digital transfer 
functions; via frequency transformation, we obtain desired digital transfer function. 

AD transformation must satisfy these conditions [5]: 

• the first condition – stable analogue filter must be converted into stable digital filter, 
• the second condition – fundamental frequency features of analogue filter must be kept 

in digital filter. 

In MATLAB, there are two ways, how to approach the bilinear transformation, thus: 

• bilinear(num, den, fs) – prewarped mode is not used to indicate “match” 
frequency, where num is a nominator of transfer function, den is a denominator of 
transfer function, and fs is sampling frequency [8]: 
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• bilinear(num, den, fs, fp) – fp parameter specifies prewarping, which 
indicates “match” frequency, for which the frequency responses (before and after 
mapping) match exactly; this parameter value is identical with edge of pass-band of an 
analogue filter [8]: 
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and 
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For example, let us consider [ ]1
0 2000 −⋅⋅== sradp πωω  and [ ]18000 −⋅⋅= srads πω . 

Frequency ratio equals to: 
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MATLAB codes, focused on this problem, are as follows: 

for analogue NLP filter (s-plane) 

 
for digital NLP filter (z-plane) 

[NumHNDPs, DenHNDPs] = cheby1(n, ap, Omegap, 'low', 's'); 

[HNDPs, omegaNDPs] = freqs(NumHNDPs, DenHNDPs); 



 
for digital low-pass filter (prewarping mode is not considered) 

 
or (equivalent code) 

 
for digital low-pass filter (use of bilinear transformation, prewarping mode is considered) 

 
or (equivalent code) 

 
Fig. 7 shows normalized frequency-magnitude characteristics of designed digital low-pass filter. 

For detailed analysis of designed IIR filters, we can use a MATLAB tool called Filter Visualization 
Tool (fvtool). 
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Figure 7: Un-normalized IIR low-pass filter – normalized frequency-magnitude characteristics, 

considering prewarped mode (yellow curve; we assume 5,02 0 =⋅=⇒= πωπωπω ω ss p ) and 
non-prewarped mode (black curve); the Cartesian coordinates 

[NumHDP4z, DenHDP4z] = bilinear(NumHDPs, DenHDPs, fvz, f0); 

[HDP4z, omegaDP4z] = freqz(NumHDP4z, DenHDP4z); 

[NumHDP3z, DenHDP3z] = cheby1(n, ap, 
2*atan(omega0*Omegap*tan(pi*f0/fvz)/(2*pi*f0))/pi, 'low', 'z'); 

[HDP3z, omegaDP3z] = freqz(NumHDP3z, DenHDP3z); 

[NumHDP2z, DenHDP2z] = bilinear(NumHDPs, DenHDPs, fvz); 

[HDP2z, omegaDP2z] = freqz(NumHDP2z, DenHDP2z); 

[NumHDP1z, DenHDP1z] = cheby1(n,ap,2*atan(omega0*Omegap/(2*fvz))/pi, 'low', 
'z'); 

[HDP1z, omegaDP1z] = freqz(NumHDP1z, DenHDP1z); 

[NumHNDPz, DenHNDPz] = cheby1(n,ap,2*atan(Omegap/(2*fvz))/pi, 'low', 'z'); 

[HNDPz, omegaNDPz] = freqz(NumHNDPz, DenHNDPz); 



5 Conclusions 
This paper deals with using mathematical background, focused on the Chebyshev polynomials, 

selected MATLAB functions from Signal Processing Toolbox, and other tools (e. g. Filter Visulization 
Tool) for designing the first-order analogue Chebyshev filters and IIR Chebyshev filters. Because this 
paper is centred on mathematic viewpoint, there are a lot of fundamental (maybe essential) formulas in 
the first part of this paper. Well, we try to relate the Chebyshev polynomials to other polynomials (e. 
g. Jacobi, Gegenbauer) and formulas (Euler, de Moivre, Rodrigues), whereas most features of the 
Chebyshev polynomials are mentioned (definition, representations, recurrence relation, roots and 
extrema etc.). 

The second part is focused on designing the first-order Chebyshev filters in p-plane (normalized 
analogue low-pass filter), s-plane (un-normalized analogue filters), and z-plane (IIR filters; normalized 
digital low-pass filter and un-normalized digital filters). Designing in p-plane is essential, it is this 
paper’s kernel, for which we also consider some mathematical apparatus (fundamental approximation 
order, tolerance scheme, roots and extrema, normalized frequency characteristics, characteristic 
equation, group delay etc.). All these formulas are used to solve practical examples, based on 
approximation of the normalized low-pass filter. These examples include the formulas, 2D graphs, 3D 
graphs, and fragments of corresponding MATLAB code. Due to MATLAB&Simulink possibilities, it 
is possible to implement this approach, based on [5], not only in Simulink, but also in the field of FIR 
filters. 
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