
USING MATLAB FUNCTIONS FOR DESIGNING CHEBYSEV
FILTERS

P. Vojcinak, J. Koziorek, R. Hajovsky

VSB – Technical University of Ostrava
Faculty of Electrical Engineering and Computer Science
Department of Cybernetics and Biomedical Engineering

Ave. 17. listopadu 2172/15, 708 33 Ostrava – Poruba, the Czech Republic

Abstract

This paper deals with using MATLAB function and tools for designing first-order
analogue Chebysev filters and IIR Chebysev filters. The first part of this paper is
focused on a design of analogue filter via Chebyshev approximation approach, i. e.
features and mathematical background of this iso-extremal approximation,
approximation of normalized low-pass (NLP, also NDP in Czech) filter, and
mathematical formulas for calculating fundamental parameters of NLP, such as
constructing a tolerance scheme, Chebyshev approximation order, poles of transfer
function, characteristic equation, and group delay. Due to frequency transformation
formulas implemented in MATLAB, un-normalized forms of frequency functions for
low-pass (LP, also DP in Czech), high-pass (HP, also the same in Czech), band-pass
(BP, also PP in Czech), and band-stop (BS, also PZ in Czech) analogue filters are also
available. The second part of this paper describes designing the first-order IIR
Chebyshev filter via implemented MATLAB functions and Filter Visualization Tool
(FVT), whereas conversion from an analogue form into a digital form is done and
discussed for bilinear (Tustin) transformation only. Naturally, both design
approaches are illustrated in form of some practical examples.

1 Introduction to Chebyshev polynomials
Chebyshev polynomials are some sequence of classic orthogonal polynomials, which are related

to famous de Moivre’s formula and which can be defined recursively. We usually distinguish between
two kinds of Chebyshev polynomials, thus [1]:

• the first kind ()xTn ,
• the second kind ()xU n .

These Chebyshev polynomials are polynomials of nth degree and their sequence composes a
polynomial sequence. In practical use, the Chebyshev polynomials are important in approximation
theory, whereas the roots of the first kind of Chebyshev polynomials (so-called Chebyshev nodes) are
used in polynomial interpolation [1]. This paper is focused on describing mathematical background of
the first kind only.

The Chebyshev polynomials are also the solutions of these ordinary differential equations
(ODE), thus [1]:

for the first kind

 () (){ } (){ } () 01 2
2

2
2 =⋅+⋅−⋅− xfnxf

dx
dxxf

dx
dx (1)

where () ()xTyxf n=≡ solution of this Chebyshev ODE.

for the second kind

 () (){ } (){ } () () 0231 2

2
2 =⋅+⋅+⋅⋅−⋅− xfnnxf

dx
dxxf

dx
dx (2)

where () ()xUyxf n=≡ solution of this Chebyshev ODE.

These second-order ODEs are special cases of Sturm-Liouville differential equation [2], because
it is possible to transform Eq. (1) and Eq. (2) into these forms:

for the first kind

 () () () 0212 22 =⋅⋅+






 ⋅−⋅ xfnxf

dx
dx

dx
d

 (3)

where () ()xTyxf n=≡ solution of this Chebyshev ODE.

for the second kind

 () () () () 02
3
21

3
2 2 =⋅+⋅⋅+







 ⋅−⋅ xfnnxf

dx
dx

dx
d

 (4)

where () ()xUyxf n=≡ solution of this Chebyshev ODE.

2 Mathematical background
This part is centred on detail description of mathematical background, related to the Chebyshev

polynomials – e g. definitions, orthogonality, representations, generating functions, recurrence
relation, roots, and extrema.

2.1 Orthogonality
Generally, both kinds of Chebyshev polynomials are orthogonal; in case of the first kind, we

assume:

• interval ()1,1 +−∈x ,

• weight function () () 2
1

21 −
−= xxw .

Based on Sturm-Liouville theory and form of an orthonormal basis in the Hilbert space, we
assume this formula [1] [4]:

 () () () () () ()
() 0

0,2
0

1 2
0

2
1

1
2

==
≠=

≠









==

==
=

=
−

⋅⋅⇒⋅⋅⋅ ∫∫
+

− nm
nnm
nm

xT
xT

x
dxxTxTdxxwxfxf nmnm

b

a
n

π
π (5)

2.2 Representation

2.2.1 Polynomial representation
The first kind of Chebyshev polynomials can be defined and represented in these several forms.

Because the Chebyshev polynomials are special cases of the ultraspherical (or Gegenbauer)
polynomials, which themselves are special cases of Jacobi (or hypergeometric) polynomials [1] [4],
because Gegenbauer differential equation has this form:

 () (){ } () (){ } () () 02121 2

2
2 =⋅⋅+⋅+⋅⋅+⋅−⋅− xfnnxf

dx
dxxf

dx
dx αα (6)

Especially, if 0=α , then we get the form of Eq. (1); in case of 1=α , we get the form of Eq.
(2). Following formulas are focused on the case of 0=α . The solution of Eq. (6) is given by
Gegenbauer polynomials () ()xCn

α [2], and Jacobi polynomials () ()xP ba
n

, [3], when 5,0−== ba .

 () () ()
() () ()xCnxP

n
nxP

n

n
xT nnnn

02
1

,
2
1

2
1

,
2
1

2!!12
!!2

2
1

1
⋅=⋅

−⋅
⋅

=⋅













 −
=







 −−






 −−

 (7)

where

 () () () () () ()






 +⋅−⋅+⋅−⋅

⋅
−

= −−





 −−

2
1

2
1

2
1

2
1

2
1,

2
1

1111
!2

1 nn
n

n

n

n

n xx
dx
dxx

n
xP (8a)

and [2]

 () () ()
() () ()

[] () ()
() () ()

[]

∑∑
=

⋅−

=

⋅− ⋅⋅
⋅⋅−
−Γ⋅−

=⋅⋅
⋅⋅−
−−⋅−

=
2

0

2
2

0

20 2
!!2

12
!!2

!11 n

m

mn
mn

m

mn
m

n x
mmn
mnx

mmn
mnxC (8b)

Generalized form of Eq. (8b) is given by Eq. (9a), leading to Rodrigues formula, thus [2]:

 () () () ()
() () () ()

[]

()
() ()xP
n

nx
mmn

mnxC n

n

m

mn
m

n







 −−

=

⋅− ⋅






 ++Γ

⋅+Γ
⋅

⋅Γ







 +Γ

=⋅⋅
⋅⋅−⋅Γ
+−Γ⋅−

= ∑ 2
1,

2
12

0

2

2
1

2
2

2
1

2
!!2

1 αα
α

α

α
α

α

α
α

 (9a)

and (Rodrigues formula) [2]

 () () () () ()
() () () ()









−⋅−⋅
⋅+⋅Γ⋅Γ
⋅+Γ⋅+Γ

⋅
−

=
−++−

2
1

22
1

2 11
22
2

!
2 ααα

αα
αα n

n

n

n x
dx
dx

n
nn

n
xC (9b)

For the Chebyshev polynomials of the first kind, the Rodrigues formula has this form [4]:

 () ()
() () () ()

() ()xG
n

x
dx
dx

n
xT n

nn
n

n

nnn

n







 −−−

⋅
−⋅⋅
⋅−

=








−⋅−⋅
−⋅⋅
⋅−

= 2
1,

2
1

2
1

22
1

2

!122
2111

!122
21

 (10a)

and

 () () () ()
() () () ()

() () ()xCnxG
n

n
n

nxG
n
nn

n
xT nn

n

n

n

n
02

1,
2
12

2
1,

2
1

22!
2

22
1

!2
2

⋅=⋅
⋅Γ

Γ
⋅

−
⋅=⋅

⋅Γ
+Γ⋅Γ

⋅
⋅

−
=







 −−






 −−

 (10b)

The result formulas in Eq. (7) and Eq. (10b) are the same.

For each non-negative integer n , both kinds of Chebyshev polynomials are polynomials of nth
degree. They are even or odd function of x , whereas n is even or odd. In case of the first kind, we
assume [1]:
 () () ()()xTxT n

n
n ⋅⋅−=⋅− 2

2 121 (11)

Naturally, other polynomial sequences like Lucas polynomials, Dickson polynomials, or
Fibonacci polynomials are also related to both kinds of Chebyshev polynomials. [1]

2.2.2 Integral representation
In case of an integral representation of the Chebyshev polynomials of the first kind, we assume

this formula [1]:

 () ()
()

()
()

dz
xz

z
ni

xnxT
C

n

nn

n ⋅
−
−

⋅
⋅⋅⋅⋅
−⋅⋅

= ∫ +

−

1

2
1

222 1
!22
1!2

π
 (12)

where i imaginary unit,
 C arbitrary Jordan curve in the form of some integration area,
 xz = inner point of the integration area,
 1±=z outer points of the integration area.

2.2.3 Trigonometric representation
In case of trigonometric representation of the Chebyshev polynomials of the first kind, let us

consider these formulas, based on Euler’s formula and de Moivre’s formula:

for cosine function

 () ()[] () () (){ }Φ⋅⋅−+Φ⋅⋅⋅=Φ⋅=Φ=⇒Φ= nininxTx n expexp
2
1coscoscos (13a)

then [1] [5]
 ()[] () ()[] 1arccoscoscoscos ≤⋅=Φ⋅=Φ xxnnTn (13b)

for hyperbolic cosine function

 () ()[] () () (){ }Φ⋅−+Φ⋅⋅=Φ⋅=Φ=⇒Φ= nnnxTx n expexp
2
1coshcoshcosh (14a)

then [1] [5]
 ()[] () ()[] 1coshargcoshcoshcosh ≥⋅=Φ⋅=Φ xxnnTn (14b)

Eq. (13b) and Eq. (14b) show, different approaches to defining the Chebyshev polynomials lead
to different explicit formulas – it is very useful for designing the Chebyshev filter not only in pass
band via Eq. (13b), but also in stop band via Eq. (14b).

The Chebyshev polynomials are also the solutions of Pell equation, which is any Diophantine
equation having this form [6]:
 122 =⋅− ynx (15a)

If we consider features of Euler’s formula, de Moivre’s formula, and Eq. (13a), then we can
write Eq. (15a) in this form, thus:

 () () () () () () 1111 2
222

1
22 =



⋅⋅−−=⋅−− − xT
dx
d

n
xxTxUxxT nnnn (15b)

If we consider ()[]Φ= cosxTn and ()[] () ()ΦΦ⋅=Φ=− sinsincos1 nxUn , then we get Euler’s
formula:

 () () () ()
() () () 1sincos

sin
sinsin1cos 22

2

2
22 =Φ⋅+Φ⋅=

Φ
Φ⋅

⋅Φ⋅−−Φ⋅ nnnn (15c)

If we also consider Eq. (15c), () ()xTxA n
22 = and () () ()xUxxB n

2
1

22 1 −⋅−= , then we get a
fundamental solution of Eq. (15b), based on de Moivre’s formula, because:
 () () () ()[] () ()[] 122 =−⋅+=− xBxAxBxAxBxA (15d)

and
 ()[] ()[] ()[] () () () ()[]nininBAx Φ⋅±Φ=Φ⋅⋅±Φ⋅=Φ±Φ=Φ= sincossincoscoscoscos2,1ϕ (15e)

and (fundamental solution)

 ()[] () () ()[] () []nn
xxxx 1sin1coscos 2

2,1
2

2,1 −±=⇒Φ⋅−±Φ=Φ= ϕϕ (15f)

then

 () () () [] []
2

11
2

22
21

nn

n
xxxxxxxT −−+−+

=
+

=
ϕϕ

 (15g)

Eq. (15g) is directly related to Eq. (7) and Eq. (8b).

2.3 Generating functions
Based on the form of Eq. (15f), it is possible to define so-called exponential generating function

for ()xTn in this form [1]:

 ()[] ()
() () ()[] ()[]

2
1exp1exp

2!
,

22

0

21 txxtxxee
n
txTtxTEG

txtx

n

n

nn

nn
⋅−−+⋅−+

=
+

=⋅=
⋅⋅∞

=
∑

ϕϕ

(16a)

Generating functions for ()xTn have these forms, thus [1] [4]:

 ()[] () () 2
0

2
0

1 21
1

21
,

ttx
tx

ttx
txtxUtxTtxTG

n

n
n

n

n
nn +⋅⋅−

⋅−
=

+⋅⋅−
⋅

−⋅=⋅= ∑∑
∞

=

∞

=

 (17a)

and

 ()[] () () () 2

2

0
2

2

1
02 21

1
21

2,
ttx

t
ttx

ttxUtxTxTtxTG
n

n
n

n

n
nn +⋅⋅−

−
=

+⋅⋅−
−⋅=⋅⋅+= ∑∑

∞

=

∞

=

 (17b)

for 1≤x and 1<t

2.4 Recurrence relation
Both kinds of Chebyshev polynomials are defined by the same recurrence relation [4]. Let us

consider:
 () () (){ }xUxTxQ nnn ,≡ (18a)

then
 () () ()xQxQxxQ nnn 11 2 −+ −⋅⋅= (18b)

where () () 10cos0 =Φ⋅== xTn zero-order Ch. polynomial,
 () () () xxTn ⇒Φ=Φ⋅⇒= cos1cos1 first-order Ch. polynomial,

 () () 122cos 2
2 −⋅⇒Φ⋅⇒= xxTn second-order Ch. polynomial,

 () () xxxTn ⋅−⋅⇒Φ⋅⇒= 343cos 3
3 third-order Ch. polynomial,

 () () 1884cos 24
4 +⋅−⋅⇒Φ⋅⇒= xxxTn fourth-order Ch. polynomial.

Eq. (18b) is also very useful, because it is closely related to characteristic equation and
characteristic function of designed Chebyshev filter.

2.5 Roots and extrema
The Chebyshev polynomial of the nth order has n different roots (Chebyshev nodes) in the

closed interval 1,1 +− . These roots are used as polynomial interpolation nodes [1], whereas
approach is based on solving this goniometrical equation:

 () () Zkkkkxx ∈⋅+⋅=
⋅⋅+

=⋅+=⇒= 21
22

2
2

0cos πππππ
 (19a)

Generally, zeros of ()xTn occur, when:

 nk
n
kx k ,,2,112

2
cos0 =






 −⋅

⋅=
π

 (19b)

where for even n 2,,2,1 nk = ,
for odd n () 21,,2,1 −= nk  .

Generally, extrema of ()xTn occur, when:

 nk
n

kxEk ,,1,0cos =





 ⋅

=
π

 (19c)

Eq. (19b) is also useful for calculating the zeros of the characteristic equation of design
Chebyshev filter.

3 Designing the first-order analogue Chebyshev filter
Designing the first-order analogue Chebyshev filter is based on the Chebyshev approximation,

which uses so-called first Chebyshev approximation method. In this case, we find some polynomial
solution in open interval ()1,1 +−=Ω . This solution has to approximate zero as best and with regular

divergence [5]. We assume some approximate differential equation; in this case it is the Pell equation,
mentioned in Eq. (15b) and converted into this form, thus:

 () () ()[]xTnxT
dx
dx nn

222 11 −⋅=



⋅− (20)

where n an order of the first kind Chebyshev polynomials, or an approx. order.

3.1 Approximation of normalized low-pass filter
This approximation is based on the first-order Chebyshev polynomials and focused on the

normalized low-pass (NLP) filter only. Due to frequency normalization, it is possible to convert ideal
LP’s requirements into a NLP prototype. Naturally, it is also possible to transform requirements for
other types of analogue filters (LP, HP, BP, and BS) into NLP filter, namely via other frequency
formulas and/or using implemented MATLAB functions. The standard results of this approximation
approach are as follows, thus:

• transfer function,
• characteristic equation,
• group delay.

There are defined and shown some ideal requirements for frequency-magnitude characteristic of
an ideal low-pass (LP) filter, see the right part of Fig. (1). Radial frequency pω is a cut-off radial
frequency of filter pass-band, where magnitude values at positive radial frequencies are given by this
formula, thus [5]:

 () ()
()




+∞∈=
∈=

=⋅≡⋅
,0

,01ˆˆ
s

p
DPLP jHjH

ωω
ωω

ωω (21a)

Analogously to ideal low-pass filter, there are defined and shown some ideal requirements for
normalized frequency-magnitude characteristic of an ideal normalized low-pass (NLP) filter, see the
left part of Fig. (1). Normalized radial frequency pΩ , naturally equalled to 1, is a normalized cut-off
radial frequency of normalized filter pass-band, where magnitude values at positive normalized radial
frequencies are given by this formula, thus [5]:

 () ()
()




+∞Ω∈Ω=
=Ω∈Ω=

=⋅≡⋅
,0

1,0,01ˆˆ
s

p
NDPNLP jHjH ωω (21b)

In case of NLP filter, we consider some scaling in the form of frequency normalization, when
we create so-called normalized complex area:

p

p
pppp

jjjsp
ω
ω

ω
ω

ω
σ

ω
ωσ

ω
=Ω⇒Ω⋅+Σ=⋅+=

⋅+
== (21c)

where s un-normalized Laplace operator,
 p normalized Laplace operator,
 Σ real axis of normalized complex area,
 Ω imaginary axis of normalized complex area.

Figure 1: Ideal frequency-magnitude characteristics – normalized low-pass filter (NLP, left) and (un-

normalized) low-pass filter (LP, right)

Because frequency-magnitude characteristics of an ideal NLP filter need not meet all the
feasibility requirements [5], it is required to consider so-called tolerance scheme, or standard tolerance
scheme (see Fig.2).

Figure 2: Normalized low-pass filter – tolerance scheme (left; including the primary parameters) and

standard tolerance scheme (right; including the secondary parameters)

Some approximating rational function can approximate magnitude (equalled to 1) in band-pass,
whereas certain dB-based error value (pa) could be detected. If we approximate zero-magnitude in
transitional band, corresponding characteristic must be continuous. Selectivity of designed filter is
given by the transitional band, which is limited by dimensionless frequency of band-stop (sΩ) and
corresponding approximation error value (sa) in this band. Parameters included in tolerance scheme
represent so-called primary parameters related to the requirements for solving the problem of NLP’s
synthesis. Fortunately, the tolerance scheme’s requirements could be given by so-called secondary
parameters related to the standard tolerance scheme [5]. There are corresponding formulas between the
tolerance scheme and the standard tolerance one, see corresponding magnitude levels shown in Fig. 2.

For band-pass, this identity is available, thus:

()







−==

+⋅=
⇒

+
= ⋅

⋅−

110

1log10

1
110 1,0

2

2

05,0

p

p

a
pa a

εε

ε

ε
 (22a)

For band-stop, this identity is available, thus:















−
==

−⋅==









+⋅=

⇒









+

=

⋅

⋅⋅−

110

110

1log10

1

110

1,011

1,0
1

2
1

2

2

1

05,0

s

ss

a

a

s

a

kk

k
k

a

k
ε

εε

ε

ε
 (22b)

For both bands, we consider this ratio formula:

s

pp
s k

k Ω

Ω
=⇒

Ω
=Ω (22c)

The Chebyshev approximation is the most important iso-extremal approximation, providing
some oscillating characteristics either in band-pass (the first kind), in band-stop (the second kind), or
in both bands. The iso-extermal approximations satisfy the requirements at the lowest order of
approximating function. [5]

At the Chebyshev approximation of the NLP filter, the characteristic function, defining iso-
extremal characteristic of approximation error in band-pass, is given by the Chebyshev polynomials.

3.2 Formulas for the NLP filter approximation
Following formulas will be used in practical example, so they are mentioned here.

3.2.1 Approximation order
The approximation order is one of the most important parameters, because other formulas are

dependent upon its value, which is given by this formula [5]:

 { }0\

1ln

1ln

cosharg

cosharg

2

1

2

11
1 +∈














−







 Ω
+

Ω














−







 Ω
+

Ω

=








 Ω








 Ω

≥ Zn

kk

kk

k

k
n

pp

pp

p

p

 (23)

Eq. (23) does not guarantee, that n will be really an integer value (even or odd), so it is required
to recalculate the values of sa and 1k , see Eq. (22b), or the values of sΩ and k , see Eq. (22c).

3.2.2 Poles of transfer function
There are two ways, how to calculate the poles of NLP’s transfer function. The first way is

based on this equation (generalized form) [5]:

 () () 0
2

1

2
1

1
1

1ˆ
2

222

2
=







 +
+⇒








 +
+

=
Ω⋅+

=Ω⋅
−

−

nn

nn
n

XX

XXT
jH

ε
 (24a)

where

ππ

εε
⋅

⋅
−⋅

⋅−−⋅
⋅
−⋅

⋅−− ⋅







−+−=⋅−=⇒= n

vjn
n

vj

v
n eBeXXX 2

12
1

2
12

12
1

1
111 (24b)

and

ππ

εε
⋅

⋅
−⋅

⋅⋅
⋅
−⋅

⋅− ⋅







++=⋅=⇒= n

vjn
n

vj

v
n eBeXXX 2

12
1

2
12

12
1

2
111 (24c)

Formulas for the transfer function poles are dependent upon the approximation order, thus [5]:

for even approximation order

 ()














 ⋅

⋅
−⋅

⋅+





 ⋅

⋅
−⋅

⋅
−

=
+

=
−−

ππ
n

vj
n

vBBXXp vv
evenv 2

12sin
2

12cos
22

11

 (24d)

for odd approximation order

 ()














 ⋅⋅+






 ⋅⋅

−
=

+
=

−−

ππ
n
vj

n
vBBXXp vv

oddv sincos
22

11

 (24e)

In case of the Chebyshev approximation, the poles of function () 2ˆ Ω⋅jH are always uniformly

located on an ellipse [5], having the primary half-axis and the secondary one:

for the primary half-axis

2

1−−
=

BBa (24f)

for the secondary half-axis

2

1−+
=

BBb (24g)

The second way is based on using the ellipse half-axes, see Eq. (24f) and Eq. (24g):

 





 ⋅

⋅
−⋅

⋅⋅+





 ⋅

⋅
−⋅

⋅−=⋅+= πµπµβα µµµ n
bj

n
ajp

2
12cos

2
12sin (24h)

3.2.3 Transfer function
A form of formulas for calculating the poles of the NLP’s transfer function is also dependent on

the approximation order [5]:

for even approximation order

 () ()
()∏

=

=

−⋅ ++⋅⋅−⋅
⋅= 2

1

22212 22

11ˆ
nm

m
evenNLP

pp
pH

µ
µµµ βααε

 (25a)

for odd approximation order

 () () () ()
()

∏
−=

=

⋅ ++⋅⋅−⋅
⋅

+⋅
= 21

1

2222 22

11ˆ
nm

m
oddNLP

ppap
pH

µ
µµµ βααε

 (25b)

3.2.4 Characteristic equation
A form of formulas for calculating the NLP’s characteristic equation is also dependent on the

approximation order [5]:

for even approximation order

 () () []∏∏
=

=

−⋅
=

=

−⋅ Ω+⋅=













 ⋅

⋅
−⋅

+⋅=
2

1

2
0

212
2

1

2212 2
2

12cos2
nm

m
nm

m
even p

n
pp

µ
µ

µ

πµϕ (26a)

for odd approximation order

 () ()
()

[]
()

∏∏
−=

=

⋅
−=

=

⋅ Ω+⋅⋅=













 ⋅

⋅
−⋅

+⋅⋅=
21

1

2
0

22
21

1

222 2
2

12cos2
nm

m
nm

m
odd pp

n
ppp

µ
µ

µ

πµϕ (26b)

3.2.5 Group delay

Because it is quite difficult to measure phase delay ()Ωφτ , group delay ()Ωgτ is preferred in
practical use. Group delay is defined as a negative first derivative of frequency-phase characteristic
()Ωφ , thus [5]:

 () ()Ω
Ω

−=Ω φτ
d
d

g (27a)

Generally, if group delay is constant (it is desired), then frequency-phase characteristic of an
ideal filter is linearly dependent upon frequency; only FIR filters are able to satisfy this idea.

In this case, we consider analogue filter and normalized frequency. Non-constant group delay in
frequency domain influences step response in time domain. In case of the Chebyshev approximation,
there are two ways, how to approximate this group delay. The first way is based on formula, which
satisfies forms of the Chebyshev polynomials, and mentioned parameters, such as approximation
order, ellipse-based placement of the transfer function’s poles, parameters of the standard tolerance
scheme, and form of the characteristic equation, thus [5]:

 () ()
() ()∑

−=

=

−
⋅ 















 +
⋅−⋅−⋅⋅







 ⋅

⋅
+⋅

⋅

Ω
⋅

Ω⋅+
=Ω

1

0

1

2

2
22 2

arccos122sinh

2
12sin1

1 nm

m

m

n
g

BBmn

n
m

T
T πεε

τ (27b)

The second way is general (i. e. independent upon an approximate type for other analogue
filters) and based on the feature of natural logarithm derivative [5]:

 () ()
()

()








Ω⋅
Ω

⋅
Ω⋅

−=Ω
Ω

−=Ω jH
d
d

jHd
d

g
ˆ

ˆ
1Reφτ (27c)

4 Practical examples
4.1 Analogue normalized low-pass (NLP) filter

Let us consider these values of normalized radial frequencies and the primary parameters, thus:

for the primary parameters
 [] []dBadBa sp 201 == (28a)

for normalized radial frequencies
 [] []−=Ω−=Ω 15,21 sp (28b)

Values of other parameters are as follows:

 5088,0508847139,0110110 11,01,0 ≅=−=−= ⋅⋅ paε (28c)

and

 4651,0465116279,0
15,2
1

≅==
Ω

Ω
=

s

pk (28d)

and

 1035,0103483852,0
110
110

110
110

201,0

11,0

1,0

1,0

1
5

≅=
−

−
=

−

−
=

⋅

⋅

⋅

⋅

a

ap

k (28e)

and (approximation order, we must round n to the nearest higher integer value)

 31141,2

4651,0
1cosharg

1035,0
1cosharg

cosharg

cosharg
1 =⇒≅



















=








 Ω








 Ω

≥ n

k

k
n

p

p

 (28f)

Result of Eq. (28f) shows the approximation order is odd. Now, we must consider all the n -
dependent formulas for odd approximation order only, and we must recalculate these parameters for
new integer value of n , too:

 ()[] ()[] 0300,0030026874,0
15,2cosharg3cosh

1
coshargcosh

1
1 ≅=

⋅
=

Ω⋅
=

sn
k (28g)

and

 5966,2459664076,24
030026874,0
508847139,01log101log10 2

2

2
1

2

≅=







+⋅=








+⋅=

k
as

ε
 (28h)

and (number of extrema, values of extrema in pass band)

2
3

6
cos

32
112cos1

2
13

2
1

2
12cos 010 =






=






 ⋅

⋅
−⋅

=Ω⇒=
−

=
−

=⇒





 ⋅

⋅
−⋅

=Ω
ππµπµ

µ n
odd

n
(28ch)

Values of the ellipse parameters are as follows:

for the primary half-axis

 4942,0494170604,0111
2
1111

2
1

1

2

1

2 ≅=







++−








++=

nn

a
εεεε

 (28i)

for the secondary half-axis

 1154,1115439189,1111
2
1111

2
1

1

2

1

2 ≅=







+++








++=

nn

b
εεεε

 (28j)

Poles of transfer function are as follows:

for the first pole

 9660,02471,0
32

112cos
32

112sin1 ⋅+−≅





 ⋅

⋅
−⋅

⋅+





 ⋅

⋅
−⋅

⋅−== jjap ππµ (28k)

for the second pole

 4942,004942,0
32

122cos
32

122sin2 −=⋅+−≅





 ⋅

⋅
−⋅

⋅+





 ⋅

⋅
−⋅

⋅−== jjap ππµ (28l)

for the third pole

 9660,02471,0
32

132cos
32

132sin3 ⋅−−≅





 ⋅

⋅
−⋅

⋅+





 ⋅

⋅
−⋅

⋅−== jjap ππµ (28m)

In MATLAB, we can create some algorithm, which calculates these poles, based on Eq. (28k),
Eq. (28l), and Eq. (28m). The MATLAB code can be written like this:

a = 0.5*(Clen1 - Clen2)

b = 0.5*(Clen1 + Clen2)

for mikro = 1:n

PolyVLevePolorovine(mikro) = - a*sin((2*mikro - 1)*pi/(2*n)) +
i*b*cos((2*mikro - 1)*pi/(2*n));

PolyVPravePolorovine(mikro) = a*sin((2*mikro - 1)*pi/(2*n)) +
i*b*cos((2*mikro - 1)*pi/(2*n));

end

PolyVLevePolorovine(1:n)

PolyVPravePolorovine(1:n)

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-1.5

-1

-0.5

0

0.5

1

1.5

x = Σ = Re[H(jΩ)]

y
=

j Ω
 =

 Im
[H

(j Ω
)]

Normovana dolni propust - rozlozeni polu prenosove funkce na elipse

Figure 3: Normalized low-pass filter – elliptic placement of three poles of the transfer function

()pH NLP
ˆ ; left half-plane of the normalized complex area

Transfer function is as follows, see Eq. (25b):

 ()() ()
() () 4913,02384,19883,0

4913,0
ˆˆ

ˆˆ
23

21

0
3 +⋅+⋅+

≅
⋅

== ppppHpH
pHpH nNLP (28n)

and (normalized frequency-magnitude characteristic)

 () ()
2414,05625,05001,1

4913,0ˆ
2463
+Ω⋅+Ω⋅−Ω

≅Ω⋅== jpH nNLP (28o)

and (normalized frequency-phase characteristic)

 () () 







Ω⋅−
Ω⋅−Ω

=⇒







Ω⋅−
Ω⋅−Ω

≅Ω= 2

3

2

3

3 9883,04913,0
2384,1

9883,04913,0
2384,1arg arctg

quadrant
first

nNLPφ (28p)

In MATLAB code, Eq. (25b) can be written like this:

m = (n - 1)/2;

H0 = 1./(epsilonp*2^(2*m));

CitatelPrenosu = H0;

for i = 1:m

JmenovatelPrenosu = conv([1 a], prod([1, -2*real(PolyVLevePolorovine(i)),
(real(PolyVLevePolorovine(i))).^2+(imag(PolyVLevePolorovine(i))).^2], m));

Omega0 = cos((2*i - 1)*pi/(2*n));

Rovnice = conv([(1./(epsilonp*H0)) 0], prod([1 0 (Omega0(i)).^2], m));

end

Prenos = tf(CitatelPrenosu, JmenovatelPrenosu)

CharakteristickaRovnice = tf(Rovnice, [0 1])

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

---> Normovany kmitocet Ω = ω/ω0 [-]

>

M
od

ul
 p

re
no

su
 |H

1(j Ω
)|

a
|H

2(j Ω
)|

Normovana dolni propust - modulova charakteristika pri Cebysevove aproximaci3. radu

|H1(jΩ)| - analyticky vypocet

|H2(jΩ)| - funkce cheb1ap(n, Rp)

Figure 4a: Normalized low-pass filter – normalized frequency-magnitude characteristics for
()Ω⋅jH1

ˆ (obtained analytically) and ()Ω⋅jH 2
ˆ (obtained by implemented MATLAB function of

cheb1ap(n, Rp)); the Cartesian coordinates

Due to MATLAB possibilities and features, it is possible to plot not only normalized frequency-
magnitude characteristic, but also other characteristics (e. g. real part of transfer function, imaginary
part of transfer function, phase characteristic, group delay) in 3D graphs. For this transfer function
form, mentioned in Eq. (28n), it is also possible to plot this function in 3D graph.

Figure 4b: Normalized low-pass filter – 3D graph of normalized frequency-magnitude characteristic
(three poles of the transfer function are shown in the left part half-plane of the normalized complex

area); the Cartesian coordinates

MATLAB code, where the normalized frequency-phase characteristic (unwrap mode) is plotted
in 3D graph, is as follows:

Characteristic function (based on characteristic equation) is as follows, see Eq. (26b):
 () () () () () () () ppjjTjjpTjp nn ⋅+⋅=Ω⋅⋅−Ω⋅⋅=Ω⋅=Ω⋅==Ω⋅= == 3434 333

3
3

33ϕ (28r)

Group delay is as follows (in radians), see Eq. (27c):

 ()
()

()
2414,05625,05001,1

6084,02500,09883,0ˆ
ˆ

1Re 246

24

+Ω⋅+Ω⋅−Ω
+Ω⋅−Ω⋅

≅








Ω⋅
Ω

⋅
Ω⋅

−=Ω jH
d
d

jHgτ (28s)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

---> Normovany kmitocet Ω = ω/ω0 [-]

>

S
ku

pi
no

va
 z

po
zd

en
i τ

1g
(Ω

) a
 τ

2g
(Ω

) [
ra

d]

Normovana dolni propust - skupinove zpozdeni pri Cebysevove aproximaci3. radu

τ1g(Ω)

τ2g(Ω)

Figure 5: Normalized low-pass filter – normalized frequency-group delay characteristics for ()Ω1gτ

(obtained by ()Ω⋅jH1
ˆ) and ()Ω2gτ (obtained by ()Ω⋅jH 2

ˆ); the Cartesian coordinates

n = 3;

Azimut = 60;

Elevace = 20;

B0 = 0.4913;

A0 = B0; A1 = 1.2384;

A2 = 0.9883; A3 = 1;

dSigma = 0.01; dOmega = dSigma;

[Delta, Sigma] = meshgrid(-1:dSigma:0, -2:dOmega:2);

s = Delta + j*Sigma;

FunkceZPrenos = B0./(A3*s.^3 + A2*s.^2 + A1*s + A0);

FunkceZSkupinove = - real((-3*s.^2 - 1.9766*s - 1.2384)./(s.^3 +
0.9883*s.^2 + 1.2384*s + 0.4913));

Imag = imag(FunkceZPrenos);

Real = real(FunkceZPrenos);

mesh(Delta, Sigma, unwrap(atan2(Imag, Real)));

Using MATLAB, we created this own algorithm, based on self-developed formulas. Transfer
functions ()Ω⋅jH1

ˆ (Hs in code) and ()Ω⋅jH 2
ˆ (H1s in code) are the input parameters of this

algorithm.

4.2 Analogue un-normalized filters

Due to MATLAB functions, implemented in Signal Processing Toolbox, it is possible to
convert the normalized low-pass (NLP) filter into these un-normalized analogue filters, whereas [6]
[7]:

• normalizedlow-pass (NLP) filter cheb1ap(n, Rp),
• low-pass (LP) filter lp2lp(b, a, Wo),
• high-pass (HP) filter lp2hp(b, a, Wo),
• band-pass (BP) filter lp2bp(b, a, Wo, Bw),
• band-stop (BS) filter lp2bs(b, a, Wo, Bw).

Where n approximation order n ,
 Rp pass-band ripple pa

pR ⋅−= 05,010 ,

 b nominator of the NLP’s transfer function ()pBNLP
ˆ ,

 a denominator of the NLP’s transfer function ()pANLP
ˆ ,

 Wo cut-off radial frequency
p

p
p Ω
==
ω

ωω0 ,

 Bw radial frequency bandwidth ()LH ffB −⋅⋅= πω 2 .

Hs = tf(NumHs, DenHs)

H1s = tf(NumH1s, DenH1s)

B01 = NumHs(length(NumHs)); A01 = DenHs(length(DenHs));

A11 = DenHs(length(DenHs) - 1); A21 = DenHs(length(DenHs) - 2);

A31 = DenHs(length(DenHs) - 3);

xOmega1 = A01 - A21*Omega.^2; dxOmega1 = - 2*A21*Omega;

yOmega1 = A11*Omega - A31*Omega.^3; dyOmega1 = A11 - 3*A31*Omega.^2;

NumTaug1 = dyOmega1.*xOmega1 - dxOmega1.*yOmega1;

DenTaug1 = xOmega1.^2 + yOmega1.^2;

Taug1 = NumTaug1./DenTaug1;

B02 = NumH1s(length(NumH1s)); A02 = DenH1s(length(DenH1s));

A12 = DenH1s(length(DenH1s) - 1); A22 = DenH1s(length(DenH1s) - 2);

A32 = DenH1s(length(DenH1s) - 3);

xOmega2 = A02 - A22*Omega.^2; dxOmega2 = - 2*A22*Omega;

yOmega2 = A12*Omega - A32*Omega.^3; dyOmega2 = A12 - 3*A32*Omega.^2;

NumTaug2 = dyOmega2.*xOmega2 - dxOmega2.*yOmega2;

DenTaug2 = xOmega2.^2 + yOmega2.^2;

Taug2 = NumTaug2./DenTaug2;

Naturally, these MATLAB functions are based on frequency transformation formulas:

for low-pass filter
 sspp Ω⋅==Ω⋅= 000 ωωωωω (29a)

for high-pass filter

s

ss
p

pp Ω
=Ω⋅==

Ω
=Ω⋅= −− 01

00
01

0
ωωωωωωω (29b)

for band-pass filter [9]

 LH
LH

pd

pd
p ffB

B 00
00

22
0

2
−=

⋅
−

=
⋅

−
=Ω

π
ωω

ω

ωω
 (29c)

for band-stop filter [9]

 LH
LH

pd

pd
p ffB

B
00

00
22

0 2
−=

⋅
−

=
−

⋅
=Ω

π
ωω

ωω
ω

 (29d)

For example, let us consider []1
0 2000 −⋅⋅= sradπω (for LP and HP),

[]11500 −⋅⋅= sradpd πω , and []12500 −⋅⋅= sradpl πω (for BP and BS). Radial frequency-
magnitude characteristics of LP filter and BP filter are as follows:

0 0.5 1 1.5 2 2.5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

---> Uhlovy kmitocet ω [rad*s-1]

>

M
od

ul
 p

re
no

su
 |H

DP
(j ω

)|

Dolni propust - modulova charakteristika pri Cebysevove aproximaci3. radu

|HDP(jω)|

Figure 6a: Un-normalized low-pass filter – radial frequency-magnitude characteristic ()ω⋅jH LP
ˆ ;

the Cartesian coordinates

MATLAB code is as follows:

[NumHDPs, DenHDPs] = lp2lp(NumHs, DenHs, omega0);

HDPs = tf(NumHDPs, DenHDPs)

[HDP, omegaDP] = freqs(NumHDPs, DenHDPs, omega);

plot(omegaDP, abs(HDP))

0 0.5 1 1.5 2 2.5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

---> Uhlovy kmitocet ω [rad s-1]

>

M
od

ul
 p

re
no

su
 |H

PP
(j ω

)|

Pasmova propust - modulova charakteristika pri Cebysevove aproximaci3. radu

|HPP(jω)|

Figure 6b: Un-normalized band-pass filter – radial frequency-magnitude characteristic ()ω⋅jH BP
ˆ ;

the Cartesian coordinates

MATLAB code is as follows:

4.3 Digital (IIR) un-normalized filters
Transfer function of IIR filter (IIR – Infinite Impulse Response) is given by this formula, thus

[5]:

 () ()
()

()

()∏

∏

∑

∑

=

−
∞

=

−

=

−

=

−

−

−
−

⋅−

⋅−⋅
=

⋅+

⋅
== N

M

N

n

n
n

M

m

m
m

zz

zzb

za

zb

zA
zBzH

1

1

1

1
00

0

0
1

1
1

1

1

1
ˆ
ˆˆ

ν
ν

µ
µ

 (30a)

Designing IIR filters is based on finding the coefficients of nominator ()1ˆ −zB and denominator

()1ˆ −zA of the transfer function, or finding zeros of ()1ˆ −zB or poles of ()1ˆ −zA to satisfy the
requirements of tolerance scheme [5]. This design process is related to:

quadrature of magnitude characteristic

 () () () ()() 21 expˆexpˆˆ
dd jzHjzzHzH ωω ⋅=⇒⋅==⋅ − (30b)

group delay

 ()
()

()
()

()
()djz

dg zB
dz
d

zB
zzA

dz
d

zA
z

ω

ωτ
⋅=













⋅−⋅=
exp

ˆ
ˆ

ˆ
ˆRe (30c)

Traditional approach is based on acceptance of analogue filters’ approximations, because some
methodology of NLP approximation has been managed yet. This paper demonstrates this idea.

[NumHPPs, DenHPPs] = lp2bp(NumHs, DenHs, omega0, Bomega);

HPPs = tf(NumHPPs, DenHPPs)

[HPP, omegaPP] = freqs(NumHPPs, DenHPPs, omega);

plot(omegaPP, abs(HPP))

During designing IIR filter using bilinear (Tustin) transformation, we consider the NLP
approximation given by Eq. (28n) and use these approaches, thus [5]:

• the first approach – using frequency transformation, we obtain some analogue transfer
functions; via AD transformation, we obtain some digital transfer function,

• the second approach – using AD transformation, we obtain some digital transfer
functions; via frequency transformation, we obtain desired digital transfer function.

AD transformation must satisfy these conditions [5]:

• the first condition – stable analogue filter must be converted into stable digital filter,
• the second condition – fundamental frequency features of analogue filter must be kept

in digital filter.

In MATLAB, there are two ways, how to approach the bilinear transformation, thus:

• bilinear(num, den, fs) – prewarped mode is not used to indicate “match”
frequency, where num is a nominator of transfer function, den is a denominator of
transfer function, and fs is sampling frequency [8]:

() 







+
−

⋅=
+
−

⋅⋅== −

−

1

1

1
12

1
12ˆˆ

z
z

Tz
zfsHzH

s
s (30d)

and







 ⋅

⋅=







⋅

⋅=
2

2
2

2 sa

s

a
d

Tarctg
f

arctg ωωω (30e)

• bilinear(num, den, fs, fp) – fp parameter specifies prewarping, which
indicates “match” frequency, for which the frequency responses (before and after
mapping) match exactly; this parameter value is identical with edge of pass-band of an
analogue filter [8]:

() ()




















+
−

⋅
⋅⋅

⋅
=

+
−

⋅









⋅

⋅
== −

−

1

1

1
12

1
12ˆˆ

z
z

Tftgz
z

f
f

tg
sHzH

sp

s

p π
π

π

π
 (30f)

and




























⋅⋅

⋅=





















⋅⋅









⋅⋅

⋅=
p

s
p

a

p

s

p
a

d

Ttg
arctg

f
f
f

tg
arctg

ω

ω
ω

π

πω
ω

2
2

2
2 (30g)

For example, let us consider []1
0 2000 −⋅⋅== sradp πωω and []18000 −⋅⋅= srads πω .

Frequency ratio equals to:

4
1

8000
20000 =

⋅
⋅

==
π
π

ω
ω

ω
s

p (30h)

MATLAB codes, focused on this problem, are as follows:

for analogue NLP filter (s-plane)

for digital NLP filter (z-plane)

[NumHNDPs, DenHNDPs] = cheby1(n, ap, Omegap, 'low', 's');

[HNDPs, omegaNDPs] = freqs(NumHNDPs, DenHNDPs);

for digital low-pass filter (prewarping mode is not considered)

or (equivalent code)

for digital low-pass filter (use of bilinear transformation, prewarping mode is considered)

or (equivalent code)

Fig. 7 shows normalized frequency-magnitude characteristics of designed digital low-pass filter.

For detailed analysis of designed IIR filters, we can use a MATLAB tool called Filter Visualization
Tool (fvtool).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

---> Normovany kmitocet Ω = ω/π [-]

>

|H
DP

(e
jΩ

T)
|

Dolni propust - modulova charakteristika pri Cebysevove aproximaci a bilinearni transformaci3. rad

|HDP(ejΩT)|

Figure 7: Un-normalized IIR low-pass filter – normalized frequency-magnitude characteristics,

considering prewarped mode (yellow curve; we assume 5,02 0 =⋅=⇒= πωπωπω ω ss p) and
non-prewarped mode (black curve); the Cartesian coordinates

[NumHDP4z, DenHDP4z] = bilinear(NumHDPs, DenHDPs, fvz, f0);

[HDP4z, omegaDP4z] = freqz(NumHDP4z, DenHDP4z);

[NumHDP3z, DenHDP3z] = cheby1(n, ap,
2*atan(omega0*Omegap*tan(pi*f0/fvz)/(2*pi*f0))/pi, 'low', 'z');

[HDP3z, omegaDP3z] = freqz(NumHDP3z, DenHDP3z);

[NumHDP2z, DenHDP2z] = bilinear(NumHDPs, DenHDPs, fvz);

[HDP2z, omegaDP2z] = freqz(NumHDP2z, DenHDP2z);

[NumHDP1z, DenHDP1z] = cheby1(n,ap,2*atan(omega0*Omegap/(2*fvz))/pi, 'low',
'z');

[HDP1z, omegaDP1z] = freqz(NumHDP1z, DenHDP1z);

[NumHNDPz, DenHNDPz] = cheby1(n,ap,2*atan(Omegap/(2*fvz))/pi, 'low', 'z');

[HNDPz, omegaNDPz] = freqz(NumHNDPz, DenHNDPz);

5 Conclusions
This paper deals with using mathematical background, focused on the Chebyshev polynomials,

selected MATLAB functions from Signal Processing Toolbox, and other tools (e. g. Filter Visulization
Tool) for designing the first-order analogue Chebyshev filters and IIR Chebyshev filters. Because this
paper is centred on mathematic viewpoint, there are a lot of fundamental (maybe essential) formulas in
the first part of this paper. Well, we try to relate the Chebyshev polynomials to other polynomials (e.
g. Jacobi, Gegenbauer) and formulas (Euler, de Moivre, Rodrigues), whereas most features of the
Chebyshev polynomials are mentioned (definition, representations, recurrence relation, roots and
extrema etc.).

The second part is focused on designing the first-order Chebyshev filters in p-plane (normalized
analogue low-pass filter), s-plane (un-normalized analogue filters), and z-plane (IIR filters; normalized
digital low-pass filter and un-normalized digital filters). Designing in p-plane is essential, it is this
paper’s kernel, for which we also consider some mathematical apparatus (fundamental approximation
order, tolerance scheme, roots and extrema, normalized frequency characteristics, characteristic
equation, group delay etc.). All these formulas are used to solve practical examples, based on
approximation of the normalized low-pass filter. These examples include the formulas, 2D graphs, 3D
graphs, and fragments of corresponding MATLAB code. Due to MATLAB&Simulink possibilities, it
is possible to implement this approach, based on [5], not only in Simulink, but also in the field of FIR
filters.

Acknowledgement
This work is supported by project SP2011/45, named “Data acquisition and processing from

large distributed systems.” of Student Grant System (VSB – Technical University of Ostrava) and by
project TA01020932, named “Using Geothermal Energy for Renewable Energy Sources Systems
Including Verification of Energy Accumulation.” of Technology Agency of the Czech Republic.

References

[1] <http://en.wikipedia.org/wiki/Chebyshev_polynomials> [cit. 16th October 2011]
[2] <http://en.wikipedia.org/wiki/Gegenbauer_polynomials> [cit. 16th October 2011]
[3] <http://en.wikipedia.org/wiki/Jacobi_polynomials> [cit. 16th October 2011]
[4] J. Nečas et al.. Aplikovaná matematika I (A až L). SNTL – Státní nakladatelství technické

literatury, Praha, Česká republika, 1977
[5] V. Davídek, M. Laipert, M. Vlček. Analogové a číslicové filtry. Nakladatelství ČVUT, Praha,

Česká republika, 345 s., 2006, ISBN 80-01-03026-1
[6] The Mathworks. Product Help – Analog Filters::Analog Lowpass Prototypes::cheb1ap. MATLAB

2010b Product Help [offline]
[7] The Mathworks. Product Help – Functions::Analog Filters::Analog Filter Transformation::lp2lp.

MATLAB 2010b Product Help [offline]
[8] The Mathworks. Product Help – Functions::Analog Filters::Filter Discretization::bilinear.

MATLAB 2010b Product Help [offline]
[9] J. Doleček. Moderní učebnice elektroniky 6. díl – Kmitočtové filtry, generátory signálů a

převodníky dat. Nakladatelství BEN – technická literatura, Praha, Česká republika, 272 s., 2009,
ISBN 978-80-7300-240-4

Petr Vojcinak
E-mail: petr.vojcinak@vsb.cz

Jiri Koziorek
E-mail: jiri.koziorek@vsb.cz

Radovan Hajovsky
E-mail: radovan.hajovsky@vsb.cz

	using matlab functions for designing chebysev filters
	1 Introduction to Chebyshev polynomials
	2 Mathematical background
	2.1 Orthogonality
	2.2 Representation
	2.2.1 Polynomial representation
	2.2.2 Integral representation
	2.2.3 Trigonometric representation

	2.3 Generating functions
	2.4 Recurrence relation
	2.5 Roots and extrema

	3 Designing the first-order analogue Chebyshev filter
	3.1 Approximation of normalized low-pass filter
	3.2 Formulas for the NLP filter approximation
	3.2.1 Approximation order
	3.2.2 Poles of transfer function
	3.2.3 Transfer function
	3.2.4 Characteristic equation
	3.2.5 Group delay

	4 Practical examples
	4.1 Analogue normalized low-pass (NLP) filter
	4.2 Analogue un-normalized filters
	4.3 Digital (IIR) un-normalized filters

	5 Conclusions
	Acknowledgement
	References

